996
Views
1
CrossRef citations to date
0
Altmetric
Articles

Passive corrosion of steel reinforcement in blended cement-based material in the context of nuclear waste disposal

, , , &
Pages 148-154 | Received 30 Sep 2016, Accepted 20 Feb 2017, Published online: 23 Aug 2017

References

  • Andra. ‘Dossier 2005, les recherches de l’Andra sur le stockage géologique des déchets radioactifs à haute activité et à vie longue: résultats et perspectives’, ISBN 2-9510108-7-7, published June 2005.
  • Huet B, L’Hostis V, Miserque F, et al. Electrochemical behaviour of mild steel in concrete: influence of pH and carbonate content of concrete pore solution. Electrochim Acta. 2005;51:172–180. doi: 10.1016/j.electacta.2005.04.014
  • Macdonald DD, Roberts B. A potentiostatic transient study of the passivation of carbon steel in 1 M NaOH. Electrochim Acta. 1978;23:557–564. doi: 10.1016/0013-4686(78)85036-1
  • Huang ZC, Ord JL. An optical study of the iron electrode in alkaline electrolyte. J Electrochem Soc. 1985;132:24–28. doi: 10.1149/1.2113774
  • Miserque F, Huet B, Bendjaballah D, et al. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water. Proceedings of the Eurocorr 2005 Conference; 4–8 September 2005; Lisboa, Portugal.
  • Carnot A, Frateur I, Zanna S, et al. Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS. Corros Sci. 2003;45:2513–2524. doi: 10.1016/S0010-938X(03)00076-3
  • Ghods P, Isgor OB, Brown JR, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl Surf Sci. 2011;257:4669–4677. doi: 10.1016/j.apsusc.2010.12.120
  • Odziemkowski MS, Schuhmacher TT, Gillham RW, et al. Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corros Sci. 1998;40:371–389. doi: 10.1016/S0010-938X(97)00141-8
  • Joiret S, Keddam M, Novoa XR, et al. Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem Conc Res. 2002;24:7–15. doi: 10.1016/S0958-9465(01)00022-1
  • Nieuwoudt MK, Comins JD, Cukrowski I. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman microspectroscopy and electrochemical polarization. Part II: In situ Raman spectra of the passive film surface during growth by electrochemical polarization. J Raman Spectrosc. 2011;42:1353–1365. doi: 10.1002/jrs.2842
  • Alonso MC, García Calvo JL, Sánchez M, et al. Ternary mixes with high mineral additions contents and corrosion related properties. Mater Corros. 2012;63(12):1078–1086. doi: 10.1002/maco.201206654
  • Koleva DA, Boshkov N, van Breugel K, et al. Steel corrosion resistance in model solutions, containing waste materials. Electrochim Acta. 2011;58:628–646. doi: 10.1016/j.electacta.2011.10.010
  • Valentini C, Berardo L, Alanis I. Influence of blast furnace slags on the corrosion rate of steel in concrete. In: NS Berke, V Chaker, D Whiting, editors. Corrosion rates of steel in concrete, ASTM STP 1065. Philadelphia (PA): American Society for Testing and Materials; 1990. p. 17–28.
  • Macphee DE, Cao HT. Theoretical description of impact of blast furnace slag (BFS) on steel passivation in concrete. Mag Concr Res. 1993;45(162):63–69. doi: 10.1680/macr.1993.45.162.63
  • Tromans D. Anodic Polarization behaviour of mild steel in hot alkaline sulfide solutions. J Electrochem Soc. 1980;127(6):1253–1256. doi: 10.1149/1.2129865
  • Muralidharan S, Saraswathy V, Thangavel K, et al. Competitive role of inhibitive and aggressive ions in the corrosion of steel in concrete. J Appl Electrochem. 2000;30:1255–1259. doi: 10.1023/A:1026570120698
  • Saraswathy V, Muralidharan S, Thangavel K, et al. Influence of activated fly ash on corrosion-resistance and strength of concrete. Cem Concr Compos. 2003;25:673–680. doi: 10.1016/S0958-9465(02)00068-9
  • Bastidas DM, Fernández-Jiménez A, Palomo A, et al. A study on the passive state stability of steel embedded in activated fly ash mortars. Corros Sci. 2008;50:1058–1065. doi: 10.1016/j.corsci.2007.11.016
  • L’Hostis V, Amblard E, Blanc C, et al. Passive corrosion of steel in concrete in context of nuclear waste disposal. Corros Eng Sci Technol. 2011;46:177–181. doi: 10.1179/1743278210Y.0000000013
  • Chomat L, L’Hostis V, Amblard E, et al. Long term study of passive corrosion of steel rebars in Portland mortar in context of nuclear waste disposal. Corros Eng Sci Technol. 2014;49:467–472. doi: 10.1179/1743278214Y.0000000201
  • Gaucher EC, Tournassat C, Pearson FJ, et al. A robust model for pore-water chemistry of clayrock. Geochim Cosmochim Acta. 2009;73:6470–6487. doi: 10.1016/j.gca.2009.07.021
  • Martin FA, Perrin S, Bataillon C. Evaluating the corrosion rate of low alloyed steel in Callovo-Oxfordian clay: towards a complementary EIS, gravimetric and structural study. Scientific Basis for Nuclear Waste Management XXXV, MRS Symposium Proceedings, Vol. 1475; 2012, p. 471–476.
  • Martin F, Perrin S, Fenart M, et al. On corrosion of carbon steels in Callovo-Oxfordian clay: complementary EIS, gravimetric and structural study providing insights on long term behaviour in French geological disposal conditions. Corros Eng Sci Technol. 2014;49:460–466. doi: 10.1179/1743278214Y.0000000181
  • Corrosion of metals and alloys – removal of corrosion products from corrosion test specimens, NF ISO 8407, ISO, Geneva, Switzerland; 2002.
  • Neff D, Reguer S, Bellot-Gurlet L, et al. Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms. J Raman Spectrosc. 2004;35:739–745. doi: 10.1002/jrs.1130
  • Bellot-Gurlet L, Neff D, Reguer S, et al. Raman studies of corrosion layers formed on archaeological irons in various media. J Nano Res. 2009;8:147–156. doi: 10.4028/www.scientific.net/JNanoR.8.147
  • L’Hostis V, Neff D, Bellot-Gurlet L, et al. Characterization of long-term corrosion of rebars embedded in concretes sampled on French historical buildings aged from 50 to 80 years. Mater Corros. 2009;60:93–98. doi: 10.1002/maco.200805019
  • Monnier J, Neff D, Réguer S, et al. A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques. Corros Sci. 2010;52:695–710. doi: 10.1016/j.corsci.2009.10.028
  • Richet C, Gallé C, Le Bescop P, et al. Synthèse des connaissances sur le comportement à long terme des bétons applications aux colis cimentés, French Report CEA-R-6050.
  • Sercombe J, Vidal R, Gallé C, et al. Experimental study of gas diffusion in cement paste. Cem Conc Res. 2007;37:579–588. doi: 10.1016/j.cemconres.2006.12.003
  • Frizon F, Gallé C. Experimental investigations of diffusive and convective transport of inert gas through cement pastes. J Porous Media. 2009;12(3):221–237. doi: 10.1615/JPorMedia.v12.i3.30
  • Saheb M, Neff D, Bellot Gurlet L, et al. Raman study of a deuterated iron hydroxycarbonate to assess long-term corrosion mechanisms in anoxic soils. J Raman Spectrosc. 2011;42:1100–1108. doi: 10.1002/jrs.2828
  • Saheb M, Berger P, Raimbault L, et al. Investigation of iron long-term corrosion mechanisms in anoxic media using deuterium tracing. J Nucl Mater. 2012;423:61–66. doi: 10.1016/j.jnucmat.2012.01.018