Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 5
122
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Microbiologically influenced corrosion of ferritic steel–zirconium-based metal waste form alloy under simulated geological repository environment

, , & ORCID Icon
Pages 340-347 | Received 31 Jan 2018, Accepted 23 Apr 2018, Published online: 03 May 2018

References

  • Keiser DD, Abraham DP, Sinkler W, et al. Actinide distribution in a stainless steel-15 wt% zirconium high-level nuclear waste form . J Nucl Mat. 2000;279:234–244. doi: 10.1016/S0022-3115(00)00002-7
  • Simpson, MF. Introduction to the pyroprocessing special issue. Nucl Technol. 2008;162:117–117. doi: 10.13182/NT08-A7388
  • Ackerman JP, Johnson TR, Chow LSH, et al. Treatment of wastes in the IFR fuel cycle. Prog Nucl Energy. 1997;31:141–154. doi: 10.1016/0149-1970(96)00008-X
  • Feron D, Crussel D, Grass JM. Corrosion issues in the French high-level nuclear waste program. Corrosion. 2009;65:213–223. doi: 10.5006/1.3319129
  • Abraham DP, McDeavitt SM, Park J. Microstructure and phase identification in type 304 stainless steel-zirconium alloys. Metall Mater Trans. 1996;27:2151–2159. doi: 10.1007/BF02651870
  • Janney DE. Host phases for actinides in simulated metallic waste form. J Nucl Mater. 2003;323:81–92. doi: 10.1016/j.jnucmat.2003.08.032
  • Abraham DP, Richardson JW, McDeavitt SM. Laves intermetallics in stainless steel-zirconium alloys. Mater Sci Eng A. 1997;239–240:658–664. doi: 10.1016/S0921-5093(97)00649-7
  • Abraham DP, Dietz N. Role of laves intermetallics in nuclear waste disposal. Mater Sci Eng A. 2002;329–331: 610–615.
  • Nagarajan K, Subramanian T, Prabhakara Reddy B, et al. Current status of pyrochemical reprocessing research in India. Nucl Technol. 2008;162:259–263. doi: 10.13182/NT08-A3954
  • Hajj HE, Abdelouas A, Grambow B, et al. Microbial corrosion of P235GH steel under geological conditions. Phys Chem Earth. 2010;35:248–253. doi: 10.1016/j.pce.2010.04.007
  • Mulligan CN, Yong RN, Fukue M. Some effects of microbial activity on the evolution of clay-based buffer properties in underground repositories. Appl Clay Sci. 2009;42:331–335. doi: 10.1016/j.clay.2008.03.002
  • Stroes-Gascoyne S, Sargent FP. The Canadian approach to microbial studies in nuclear waste management and disposal. J Cont Hydro. 1998;35:175–190. doi: 10.1016/S0169-7722(98)00128-4
  • Bairi LR, George RP, Kamachi Mudali U. Microbially induced corrosion of D9 stainless steel-zirconium metal waste form alloy under simulated geological repository environment. Corros Sci. 2012;61:19–27. doi: 10.1016/j.corsci.2012.04.019
  • Schutz MK, Moreira R, Bildstein O, et al. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity. Bioelectrochemistry. 2014;97:61–68. doi: 10.1016/j.bioelechem.2013.07.003
  • Xu C, Zhang Y, Cheng G, et al. Pitting corrosion behavior of 316 L stainless steel in the media of sulphate reducing and iron-oxidizing bacteria. Mater Charact. 2008;59:245–255. doi: 10.1016/j.matchar.2007.01.001
  • King F. Microbiologically influenced corrosion of nuclear waste containers. Corrosion. 2009;65:233–251. doi: 10.5006/1.3319131
  • Karn SK, Fang G, Duan J. Bacillus sp. Acting as dual role for corrosion induction and corrosion inhibition with carbon steel. Frontiers Microb. 2017;8:1–11. doi: 10.3389/fmicb.2017.02038
  • Kip N, van Veen JA. Mini review: the dual role of microbes in corrosion. The ISME J. 2015;9:542–551. doi: 10.1038/ismej.2014.169
  • Herrera LK, Videla HA. Role of iron reducing bacteria in corrosion and protection of carbon steel. Environ Sci Technol. 2015;49:7483–7490. doi: 10.1021/acs.est.5b00693
  • Malukov BS. Corrosion of steels induced by microorganisms. Metall Mater Eng. 2012;18:223–231.
  • Vreuls C, Zocchi G, Garitte G, et al. Biomolecules in multilayer film for antimicrobial and easy – cleaning stainless steel surface applications. Biofouling. 2010;26:645–656. doi: 10.1080/08927014.2010.506678
  • Buczynski W, Kory MM, Steiner RP, et al. Bacterial adhesion to zirconium surfaces. Colloids Surf B. 2003;30:167–175. doi: 10.1016/S0927-7765(03)00068-7
  • Ehrman JD, Bender ET, Stojilovic N. Microbial adhesion to zirconium alloys. Colloids Surf B. 2006;50:152–159. doi: 10.1016/j.colsurfb.2006.04.010
  • Bairi LR, Ningshen S, Kamachi Mudali U, et al. Microstructural analysis and corrosion behavior of D9 stainless steel – zirconium metal waste form alloys. Corros Sci. 2010;52:2291–2302. doi: 10.1016/j.corsci.2010.03.018
  • Bairi LR, Ningshen S, Kamachi Mudali U, et al. Corrosion issues related to disposal of 316 SS-zirconium metal waste form under simulated repository conditions. Corros Eng Sci Technol. 2011;46:171–176. doi: 10.1179/1743278210Y.0000000019
  • Raj B, Vijayalakshmi M. 4.03 ferritic steels and advanced ferritic martensitic steels. Compr Nucl Mater. 2012;4:97–121. doi: 10.1016/B978-0-08-056033-5.00066-5
  • Kutty TRG, Ravi K, Kaity S, et al. Effect of temperature on hardness of U-15% Pu alloy and T91 cladding. J Nucl Mater. 2012;429:341–345. doi: 10.1016/j.jnucmat.2012.06.025
  • Rao TS, Rani PG, Venugopalan VP, et al. Biofilm formation in a freshwater environment under experimental photic and aphotic conditions. Biofouling. 1997;11:265–282. doi: 10.1080/08927019709378336
  • Fru EC, Athar R. In situ bacterial colonization of compacted bentonite under deep geological high-level radioactive waste repository condition. Appl Microbiol Biotech. 2008;79:499–510. doi: 10.1007/s00253-008-1436-z
  • Pedersen K, Motamedi M, Kamiand O. Mixing and sulphate-reducing activity of bacteria in swelling, compacted bentonite clay under high-level radioactive waste repository conditions. J Appl Microbiol. 2000;89:1038–1047. doi: 10.1046/j.1365-2672.2000.01212.x
  • Fukunaga S, Jintoku T, Iwata Y, et al. Investigation of microorganisms in bentonite deposits. Giomicrobiol. J. 2005;22:361–370. doi: 10.1080/01490450500248788
  • Krug NR, Hold, JG, editors. Bergy’s manual of systematic bacteriology. Vol. 1. Baltimore: Williams & Wilkins; 1984.
  • Gurumoorthy C, Sasidhar P, Arumugham V, et al. Sub-surface investigations on deep saline ground water of charnockite rock formation kalpakkam India. Environ Monit Assess. 2004;91:211–222. doi: 10.1023/B:EMAS.0000009237.06427.2b
  • Tatawat RK, Singh Chandel CP. Quality of ground water of Jaipur city, Rajasthan (India) and its suitability for domestic and irrigation purpose. Appl Ecol Env Res. 2008;6:79–88. doi: 10.15666/aeer/0602_079088
  • APHA. Standard methods for the examination of water and wastewater. Washington (DC): APHA; 1989. pp. 182–184.
  • Gopal J, George RP, Muraleedharan P, et al. Photocatalytic inhibition of microbial adhesion by anodized titanium. Biofouling. 2004;20:167–175. doi: 10.1080/08927010400008563
  • Mah TC, OToole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39. doi: 10.1016/S0966-842X(00)01913-2
  • Hsu CH, Mansfeld F. Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion. 2001;57:747–748. doi: 10.5006/1.3280607
  • Scudino S, Donnadieu P, Surreddi KB, et al. Microstucture and mechanical properties of Laves phase-reinforced Fe-Zr-Cr alloys. Intermetallics. 2009;17:532–539. doi: 10.1016/j.intermet.2009.01.007
  • Little BJ, Wagner P. An overview of microbiologically influenced corrosion of metals and alloys used in the storage of nuclear wastes. Can J Microbiol. 1996;42:367–374. doi: 10.1139/m96-052
  • Ramya S, George RP, Rao RVS. Effect of biofouling on anodized and sol-gel treated titanium surfaces: a comparative study. Biofouling. 2010;26:883–891. doi: 10.1080/08927014.2010.529613
  • Little BJ, Wagner PS, Jacobus OJ. The impact of sulfate-reducing bacteria on welded copper-nickel seawater piping systems. Mater Performance. 1988;27:57–61.
  • Little BJ, Lee J, Ray R. How marine conditions affect the severity of MIC of steels. MIC-An International Perspective Symposium-Feb 14–15, Extrin Corrosion Consultants, Curtin University, Perth, Australia; 2007.
  • Okamoto G. Passive film of 18-8 stainless steel structure and its function. Corros Sci. 1973;13:471–489. doi: 10.1016/0010-938X(73)90031-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.