Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 7: International Symposium on Coatings and Corrosion (ISCC2016)
192
Views
0
CrossRef citations to date
0
Altmetric
Articles

Is duplex stainless steel more corrosion resistant than 316L in aqueous acid chloride-containing environments at temperatures higher than 100°C?

, , , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 502-509 | Received 21 Mar 2018, Accepted 23 Jul 2018, Published online: 09 Aug 2018

References

  • Sedriks AJ. Corrosion of stainless steels. New York (NY): John Wiley & Sons; 1996.
  • Talonen J, Aspegren P, Hänninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels. Mater Sci Technol. 2004;20:1506–1512. doi: 10.1179/026708304X4367
  • Gussev MN, McClintock DA, Garner FA. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the spallation neutron source. J Nucl Mater. 2016;468:210–220. doi: 10.1016/j.jnucmat.2015.07.013
  • Alves JM, Brandao LP, Paula AS. The influence of sample preparation on the quantitative analysis of the volume fraction of martensite formed in a 304L trip steel. Mater Res. 2015;18:159–163. doi: 10.1590/1516-1439.347714
  • Deng B, Jiang Y, Gong J, et al. Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions. Electrochim Acta. 2008;53:5220–5225. doi: 10.1016/j.electacta.2008.02.047
  • Huang J, Wu X, Han E-H. Influence of pH on electrochemical properties of passive films formed on alloy 690 in high temperature aqueous environments. Corros Sci. 2009;51:2976–2982. doi: 10.1016/j.corsci.2009.08.002
  • Spaepen GJ, Fevery-DeMeyer MJ. Electrochemical corrosion experiments at temperatures above 100 °C. Corros Sci. 1967;7:405–412. doi: 10.1016/S0010-938X(67)80053-2
  • Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corros Sci. 1998;40:337–370. doi: 10.1016/S0010-938X(97)00140-6
  • Wang J, Wang J, Han E-H. Influence of conductivity on corrosion behavior of 304 stainless steel in high temperature aqueous environment. J Mater Sci Technol. 2016;32:333–340. doi: 10.1016/j.jmst.2015.12.008
  • Olmedo AM, Villegas M, Alvarez MG. Corrosion behaviour of alloy 800 in high temperature aqueous solutions: electrochemical studies. J Nucl Mater. 1996;229:102–114. doi: 10.1016/0022-3115(95)00206-5
  • Park J, Pyun S. Pit formation and growth of alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 298–573 K using fractal geometry. Corros Sci. 2003;45:995–1010. doi: 10.1016/S0010-938X(02)00212-3
  • Park J, Pyun S, Lee SB. Growth kinetics of passivating oxide film of inconel alloy 600 in 0.1 m Na2SO4 solution at 25-300 oC using the abrading electrode technique and ac impedance spectroscopy. Electrochim Acta. 2004;49:281–292. doi: 10.1016/j.electacta.2003.08.010
  • Kim D, Kwon H, Kim HP. Effects of the solution temperature and the pH on the electrochemical properties of the surface oxide films formed on alloy 600. Corros. Sci. 2008;50:1221–1227. doi: 10.1016/j.corsci.2008.01.008
  • Sun H, Wu X, Han E. Effects of temperature on the protective property, structure and composition of the oxide film on alloy 625. Corros Sci. 2009;51:2565–2572. doi: 10.1016/j.corsci.2009.06.043
  • Huang J, Wu X, Han E. Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments. Corros. Sci. 2010;52:3444–3452. doi: 10.1016/j.corsci.2010.06.016
  • Blasco-Tamarit E, García-García DM, Antón JG. Imposed potential measurements to evaluate the pitting corrosion resistance and the galvanic behaviour of a highly alloyed austenitic stainless steel and its weldment in a LiBr solution at temperatures up to 150°C. Corros Sci. 2011;53:784–795. doi: 10.1016/j.corsci.2010.11.013
  • Manning PE, Duquette DJ. The effect of temperature (25°–289°C) on pit initiation in single phase and duplex 304L stainless steels in 100 ppm Cl-solution. Corros Sci. 1980;20:597–609. doi: 10.1016/0010-938X(80)90074-8
  • Wang J-H, Su CC, Szklarska-Smialowska Z. Effects of Cl- concentration and temperature on pitting of AISI 304 stainless steel. Corrosion. 1988;44:732–737. doi: 10.5006/1.3584938
  • Yashiro H, Tanno K. The effect of electrolyte composition on the pitting and repassivation behavior of AISI 304 stainless steel at high temperature. Corros Sci. 1990;31:485–490. doi: 10.1016/0010-938X(90)90150-4
  • Sun H, Wu X, Han E. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution. Corros Sci. 2009;51:2840–2847. doi: 10.1016/j.corsci.2009.08.006
  • Duan Z, Arjmand F, Zhang L, et al. Investigation of the corrosion behavior of 304L and 316L stainless steels at high-temperature borated and lithiated water. J Nucl Sci Technol. 2016;53:1435–1446. doi: 10.1080/00223131.2015.1125311
  • Klapper HS, Stevens J, Wiese G. Pitting corrosion resistance of CrMn austenitic stainless steel in simulated drilling conditions—role of pH, temperature, and chloride concentration. Corrosion. 2013;69:1095–1102. doi: 10.5006/0947
  • Shintani D, Ishida T, Izumi H, et al. XPS studies on passive film formed on stainless steel in a high-temperature and high-pressure methanol solution containing chloride ions. Corros Sci. 2008;50:2840–2845. doi: 10.1016/j.corsci.2008.07.006
  • Shintani D, Ishida T, Fukutsuka T, et al. Electrochemical behavior of various kinds of stainless steels in a high-temperature and high-pressure methanol solution. Corrosion. 2008;64:607–612. doi: 10.5006/1.3278496
  • Shintani D, Ishida T, Fukutsuka T, et al. Electrochemical behavior of stainless steel under high-temperature and high-pressure methanol solution containing oxygen and chloride ions. J Mater Sci Eng. 2011;B1:861–870.
  • Darowicki K, Krakowiak S. The temperature dependencies of susceptibility of 654SMO and 316L stainless steels to pitting. Anti-corros Methods Mater. 2000;47:15–19. doi: 10.1108/00035590010309960
  • Montemor MF, Ferreira MGS, Hakiki NE, et al. Chemical composition and electronic structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments. Corros Sci. 2000;42:1635–1650. doi: 10.1016/S0010-938X(00)00012-3
  • Delville MH, Botella P, Jaszay T, et al. Electrochemical study of corrosion in aqueous high pressure, high temperature media and measurements of materials corrosion rates: applications to the hydrothermal treatments of organic wastes by SCWO. J Supercrit Fluid. 2003;26:169–179. doi: 10.1016/S0896-8446(02)00152-3
  • Bojinov M, Kinnunen P, Lundgren K, et al. A mixed-conduction model for the oxidation of stainless steel in a high-temperature electrolyte estimation of kinetic parameters of oxide layer growth and restructuring. J Electrochem Soc. 2005;152:B250–B261. doi: 10.1149/1.1931447
  • Montemor MF, Ferreira MGS, Walls M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, alloy 600, and alloy 690 in high-temperature aqueous environments. Corrosion. 2003;59:11–21. doi: 10.5006/1.3277531
  • Lou X, Othon MA, Rebak RB. Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water. Corros Sci. 2017;127:120–130. doi: 10.1016/j.corsci.2017.08.023
  • Ferreira EA, Noce RD, Fugivara CS, et al. Evaluation of 316L stainless steel corrosion resistance in solution simulating the acid hydrolysis of biomass. J Electrochem Soc 2011;158:C95–C103. doi: 10.1149/1.3554728
  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–685. doi: 10.1016/j.biotechadv.2011.05.005
  • Rossell CEV, Lahr D, Hilst AGP, et al. Saccharification of sugarcane bagasse for ethanol production using the organosolv process. Int Sugar J. 2005;107:192–195.
  • Cheng X, Feng Z, Li C, et al. Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments. Electrochim Acta. 2011;56:5860–5865. doi: 10.1016/j.electacta.2011.04.127
  • Liu X, Wu X, Han EH. Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water. Electrochim Acta. 2013;108:554–565. doi: 10.1016/j.electacta.2013.06.131
  • Ferreira EA, Polachini FC, Fugivara CS, et al. Construction of a cell-autoclave for electrochemical measurements at high temperatures. Quim Nova. 2011;34:1647–1650. doi: 10.1590/S0100-40422011000900027
  • Ashraf-Khorassani M, Braun RD. A tungsten reference electrode for use in corrosive media—a comparative study with oother reference electrodes. Corrosion. 1987;43:32–37. doi: 10.5006/1.3583107
  • Song GL. Transpassivation of Fe–Cr–Ni stainless steels. Corros Sci. 2005;47:1953–1987. doi: 10.1016/j.corsci.2004.09.007
  • Stern M. Evidence for a logarithmic oxidation process for stainless steel in aqueous systems. J Electrochem Soc. 1959;106:376–381. doi: 10.1149/1.2427363
  • Olefjord I, Brox B, Jelvestam U. Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA. J Electrochem Soc. 1985;132:2854–2861. doi: 10.1149/1.2113683
  • Fattah-Alhosseini A, Saatchi A, Golozar MA, et al. The passivity of AISI 316L stainless steel in 0.05 M H2SO4. J Appl Electrochem. 2010;40:457–461. doi: 10.1007/s10800-009-0016-y
  • Ferreira EA, Rocha-Filho RC, Biaggio SR, et al. Corrosion resistance of the Ti–50Zr at.% alloy after anodization in different acidic electrolytes. Corros Sci. 2010;52:4058–4063. doi: 10.1016/j.corsci.2010.08.021
  • Ferreira EA, Della Noce RD, Fugivara CS, et al. Influence of ethanol, acidity and chloride concentration on the corrosion resistance of AISI 316L stainless steel. J Braz Chem Soc. 2013;24:397–405. doi: 10.1590/S0103-50532013000300006
  • Tait WS. Comparison of potentiodynamically determined pitting rates with actual pitting rates for mild steel and admiralty brass in oxygen bearing waters. Corrosion. 1978;34:214–218. doi: 10.5006/0010-9312-34.6.214
  • Byun TS, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 2004;52:3889–3899. doi: 10.1016/j.actamat.2004.05.003
  • Sugimoto K, Matsuda S. Analysis of passive films on austeno-ferritic stainless steel by microscopic ellipsometry. J Electrochem Soc. 1983;130:2323–2329. doi: 10.1149/1.2119579
  • Frankel GS. Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc. 1998;145:2186–2198. doi: 10.1149/1.1838615
  • Macdonald JR. Impedance spectroscopy – emphasizing solid materials and systems. 1st ed. New York (NY): John Wiley & Sons; 1987.
  • Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. 1st ed. New Jersey (NJ): John Wiley & Sons; 2008.
  • Mohammadi M, Choudhary L, Gadala IM, et al. Electrochemical and passive layer characterizations of 304L, 316L, and duplex 2205 stainless steels in thiosulfate gold leaching solutions. J Electrochem Soc 2016;163:C883–C894. doi: 10.1149/2.0841614jes
  • Hirschorn B, Orazem ME, Tribollet B, et al. Constant-phase-element behavior caused by resistivity distributions in films: I. theory. J Electrochem Soc. 2010;157:C452–C457. doi: 10.1149/1.3499564
  • Jin S, Atrens A. ESCA-Studies of the structure and composition of the passive film formed on stainless steels by various immersion temperatures in 0.1 M NaCl solution. Appl Phys A. 1988;45:83–91. doi: 10.1007/BF00618768
  • Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels. Corros Sci. 1991;32:443–465. doi: 10.1016/0010-938X(91)90125-9
  • Philippe M. Corrosion mechanisms in theory and practice. 2nd Ed New York (NY): Marcel Dekker; 2002.
  • Abd El Kader JM, Abd El Wahab FM, Khed MGA, et al. Oxide film thickening on the surface of iron-chromium alloys in relation to anion type and concentration. Mater Chem. 1982;7:313–329. doi: 10.1016/0390-6035(82)90012-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.