Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 8
168
Views
0
CrossRef citations to date
0
Altmetric
Articles

Corrosion of MCrAlY: Pt composites prepared by spark plasma sintering

ORCID Icon, &
Pages 539-548 | Received 16 Jul 2018, Accepted 27 Jul 2018, Published online: 27 Aug 2018

References

  • Czech N, Schmitz F, Stam W. Improvement of MCrAlY coatings by addition of rhenium. Surf Coat Technol. 1994;68–69:17–21. doi: 10.1016/0257-8972(94)90131-7
  • Nickel H, Clemens D, Quadakkers WJ, et al. Development of NiCrAlY alloys for corrosion – resistant coatings of Gas turbine components. J Press Vessel Technol. 1999;121:384–387. doi: 10.1115/1.2883719
  • Monceau D, Boudot-Miquet A, Bouhanek K, et al. Oxidation et protection des materiaux pour sous-couches (NiAlPd, NiAlPt, NiCoCrAlTa, CoNiCrAlY) de barriers thermiques. J Phys IV France. 2000;10:167–171. doi: 10.1051/jp4:2000423
  • Taylor TA, Bettridge DF. Development of alloyed and disperse –strengthened MCrAlY coatings. Surf Coat Technol. 1996;86–87:9–14. doi: 10.1016/S0257-8972(96)02961-1
  • Cocking LJ, Johnston RP, Richards PG. Protecting Gas turbine components: the relative durability of a conventional and a platinum –modified aluminide coating. Plat Met Rev. 1985;29(1):17–26.
  • Patnaik P.C., Thamburaj R., Sudarshan T.S., Formation and behaviour of platinum aluminide coatings on nickel-base alloys. In: Sudarshan TS, Bhat DG, editors. Surface modification technologies III. Warrendale (PA): TMS; 1990. p. 759.
  • Streiff R, Boone DH. Corrosion resistant modified aluminide coatings. In: Sisson Jr RD, editor. Coatings and bimetallics for aggressive environments. Metals Park (OH): ASM International; 1985. p. 159.
  • Kim GM, Mieir GH, Pettit FS. Platinum-modified diffusion aluminide coatings on nickel-base, Report University of Pittsburgh; 1993. 28.
  • Felton EJ, Pettit FS. Development growth and adhesion of Al2O3 on platinum–aluminum alloys. Oxid Met. 1976;10(3):189–223. doi: 10.1007/BF00612159
  • Kamm LJ, Milligan WW. Phase stability in (Ni,Pt)3Al alloys. Scripta Metall Mater. 1994;31 (11):1461–1464. doi: 10.1016/0956-716X(94)90056-6
  • Fountain JG, Golightly FA, Stott FH, et al. The influence of platinum on the maintenance of α-Al2O3 as a protective scale. Oxid Met. 1976;10:341–345. doi: 10.1007/BF00612031
  • Allam IM, Akuezue HC, Whittle DP. Influence of small Pt additions on Al2O3 scale adherence. Oxid Met. 1980;14(6):517–530. doi: 10.1007/BF00603477
  • Hoppin G.S., Danesi W.P. In: Sims CT, Stolof NS, and Hagel WC editors. High Temperature Materials for Aerospace and Industrial Power. New York (NY): John Wiley & Sons; 1987. p. 949–962. A Wiley-Interscience Publication.
  • Murakumo T, Kobayash T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ volume fraction. Acta Mater. 2004;52:3737–3744. doi: 10.1016/j.actamat.2004.04.028
  • Drost E, Gölitzer H, Poniatowski M, et al. Platinwerstoffe für hochtemperatur-einsatz=platinum engineering materials for high temperature applications. Metallurgy. 1996;50:492–498.
  • Hill PJ, Cornish LA, Ellis P, et al. The effects of Ti and Cr additions on the phase equilibria and properties of (Pt)/Pt3Al alloys. J Alloys Compds. 2001;322:166–175. doi: 10.1016/S0925-8388(01)01018-0
  • Hill PJ, Adams N, Biggs T, et al. Platinum alloys based on Pt–Pt3Al for ultra-high temperature use. Mater Sci Eng. 2002;329–331:295–304. doi: 10.1016/S0921-5093(01)01577-5
  • Vorberg S, Wenderoth M, Fischer B, et al. Pt-Al-Cr-Ni superalloys: heat treatment and microstructure. JOM. 2004;56(9):40–43. doi: 10.1007/s11837-004-0199-y
  • Hueller M, Wenderoth M, Vorberg S, et al. Optimization of composition and heat treatment of Age-hardened Pt-Al-Cr-Ni alloys. Metall Mater Trans. 2005;36A:681–689.
  • Wenderoth M, Glatzel U, Völkl R, et al. On the development and investigations of Quaternary Pt-based superalloys with Ni-additions. Metall Mater Trans. 2005;36:567–575. doi: 10.1007/s11661-005-0171-7
  • Vorberg S, Wenderoth M, Fischer B, et al. TEM investigations of the γ/γ’ phase boundary in Pt-base superalloys. JOM. 2005;57:49–51. doi: 10.1007/s11837-005-0233-8
  • Pint BA, Wright IG, Lee WY, et al. Substrate and bond coat compositions: factors affecting alumina scale adhesion. Mater Sci Eng. 1998;A245:201–211. doi: 10.1016/S0921-5093(97)00851-4
  • Yang YF, Jiang CY, Yao HR, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni,Pt)Al coatings with different thickness of initial Pt plating. Corr Sci. 2016;111:162–174. doi: 10.1016/j.corsci.2016.05.011
  • Zhou Z, Penga H, Zhenga L, et al. Microstructure and cyclic oxidation behaviour of low-Pt/Dy co-composite β-NiAl coatings on single crystal (SC) superalloy. Surf Coat Technol. 2016;304(25):108–116. doi: 10.1016/j.surfcoat.2016.01.062
  • Liu RD, Jiang SM, Yu HJ, et al. Preparation and hot corrosion behaviour of Pt modified AlSiY coating on a Ni-based superalloy. Corr Sci. 2016;104:162–172. doi: 10.1016/j.corsci.2015.12.007
  • Terock M, Konrad CH, Popp R, et al. Tailored platinum-nickel nanostructures on zirconia developed by metal casting, internal oxidation and dealloying. Corr Sci. 2016;112:246–254. doi: 10.1016/j.corsci.2016.06.010
  • Vialas N, Monceau D. Effect of Pt and Al content on the long-term, high temperature oxidation behavior and interdiffusion of a Pt-modified aluminide coating deposited on Ni-base superalloys. Surf Coat Technol. 2006;201(7):3846–3851. doi: 10.1016/j.surfcoat.2006.07.246
  • Chen K. Sulphur diffusion in β-NiAl and effect of Pt additive: an ab initio study. J Phys D: Appl Phys. 2016;49:055306. doi: 10.1088/0022-3727/49/5/055306
  • Biondo C, Strohl JP, Samuelson JW, et al. Nickel-base alloy for gas turbine applications. Power Systems Manufacturing LIc-US Patent, 20100080729 A1 2016 Patents.
  • Murphy MS. Pt-Al-Hf/Zr coating and method, US Patent 9284846 B2 2016 Patents.
  • Gleeson B, Wang W, Hayashi S, et al. Effects of platinum on the interdiffusion and oxidation behavior of Ni-Al-based alloys. Mater Sci Forum. 2004;461–464:213–222. doi: 10.4028/www.scientific.net/MSF.461-464.213
  • Pint BA. Experimental observations in support of the dynamic segregation theory to explain the reactive element effect, Oxid Met. 1996;45:1–37. doi: 10.1007/BF01046818
  • Evans H, Lobb RC. Conditions for the initiation of oxide-scale cracking and spallation. Corr Sci. 1984;24:209–222. doi: 10.1016/0010-938X(84)90051-9
  • Haynes JA, Pint BA, Porter WD, et al. Comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys, Mater High Temp. 2004;21:87–94. doi: 10.1179/mht.2004.012
  • Pint BA, Haynes JA, More KL, et al. In: Reed RC, et al., editors. The performance of Pt-modified alumina-forming coatings and model alloys. Warrendale (PA): TMS; 2008. Submitted to Superalloys 2008.
  • Nicholls JR. Advances in coating design for high performance Gas turbines. MRS Bull. 2003;28:659–670. doi: 10.1557/mrs2003.194
  • Cuenca-Álvarez R. Díaz de la Torre S, Juarez Lopez F., Mechanical dispersion of platinum particles and its effect on the microstructure of MCrAlY alloy prepared by SPS. Powder Technol. 2016;291:193–200. doi: 10.1016/j.powtec.2015.12.017
  • Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A. 2000;287:183–188. doi: 10.1016/S0921-5093(00)00773-5
  • Munir ZA, Anselmi-Tamburini U, Ohyanagi U. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci. 2006;41:763–777. doi: 10.1007/s10853-006-6555-2
  • Couret A, Molénat G, Galy J, et al. Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics. 2008;16:1134–1141. doi: 10.1016/j.intermet.2008.06.015
  • Bangchao Y, Jiawen J, Yican Z. Spark-plasma sintering the 8-mol% yttria-stabilized zirconia electrolyte. J Mater Sci. 2004;39(22):6863–6865. doi: 10.1023/B:JMSC.0000045622.65071.3d
  • Dahl P, Kaus I, Zhao Z, et al. Densification and properties of zirconia prepared by three different sintering techniques. Ceram Int. 2007;33:1603–1610. doi: 10.1016/j.ceramint.2006.07.005
  • Juarez JMG, Jaramillo D-V, Cuenca CA, et al. Sintering comparison of NiCoCrAl-Ta powder processed by hot pressing andspark plasma. Powder Technol. 2012;221:264. doi: 10.1016/j.powtec.2012.01.011
  • Serrano P-E, Martinez G-H, Martinez G-K, et al. Densification and microstructure of spark plasma sintered 7YSZ-Gd2O3 ceramic nano-composites. J Asian Ceram Soc. 2017;5:266–275. doi: 10.1016/j.jascer.2017.05.004
  • Manière C, Nigito E, Durand L, et al. Spark plasma sintering and complex shapes: The deformed interfaces approach. Powder Technol. 2017;320:340–345. doi: 10.1016/j.powtec.2017.07.048
  • Voisin T, Monchoux JP, Durand L, et al. An innovative Way to produce γ-TiAl blades: spark plasma sintering Adv. Eng Mater. 2015;17(10):1408–1413.
  • Arnaud C, Manière C, Chevallier G, et al. Dog-bone copper specimens prepared by one-step spark plasma sintering. J Mater Sci. 2015;50:7364–7373. doi: 10.1007/s10853-015-9293-5
  • Khor KA, Yu LG, Chan SH, et al. Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). Eur Ceram Soc. 2003;23:1855–1863. doi: 10.1016/S0955-2219(02)00421-1
  • He F, Zhang H, Liu L. Study of rare-earth oxide sintering additive systems for spark plasma sintering AlN ceramics. Mater Sci Eng. 2010;A527:5268–5272. doi: 10.1016/j.msea.2010.04.098
  • Cárdenas LC, Ruíz JL, Vigueras DJ, et al. Spark plasma sintering of alfa-Si3N4 ceramics with Al2O3 and Y2O3 as additives and its morphology transformation. J Alloys Compd. 2010;501:345–351. doi: 10.1016/j.jallcom.2010.04.102
  • Ye F, Hou Z, Zhang H, et al. Spark plasma sintering of CBN/ß-SiAlON composites. Mater Sci Eng. 2010;A527:4723–4726. doi: 10.1016/j.msea.2010.04.034
  • Monceau D, Oquab D, Estournes C, et al. Pt-modified Ni aluminides MCrAlY-base multilayer coatings and TBC systems fabricated by spark plasma sintering for the protection of Ni-base superalloys. Surf Coat Technol. 2009;204:771–778. doi: 10.1016/j.surfcoat.2009.09.054
  • Boidot M, Selezneff S, Monceau D, et al. Proto-TGO formation in TBC systems fabricated by spark plasma sintering. Surf Coat Technol. 2010;205:1245–1249. doi: 10.1016/j.surfcoat.2010.09.042
  • Wang Y, Fu Z. Study of temperature field in spark plasma sintering. Mater Sci Eng B. 2002;90(1–2):34–37. doi: 10.1016/S0921-5107(01)00922-9
  • Wu YJ, Li J, Chen XM, et al. Densification and microstructures of PbTiO3 ceramics prepared by spark plasma sintering. Mater Sci Eng. 2010;A257:5157–5160. doi: 10.1016/j.msea.2010.04.096
  • Pint B. A., Haynes J. A., More K. L., Wright I. G. In: Green KA, et al., editors. The Use of Model Alloys to Understand and Improve the Performance of Pt-modified Aluminide Coatings. Warrendale (PA): TMS; 2004: 597–606.
  • Zhang Y, Lee WY, Haynes JA, et al. Synthesis and cyclic oxidation behavior of a (Ni,Pt)Al coating on a desulfurized Ni-base superalloy. Met Trans A. 1999;30A(10):2679–2687. doi: 10.1007/s11661-999-0308-1
  • Leyens C, Pint BA, Wright IG. Effects of composition on the oxidation and Hot corrosion resistance of NiAl composite with precious metals. Surf Coat Technol. 2000;133–134:15–22. doi: 10.1016/S0257-8972(00)00878-1
  • Audigié P, Rouaix-Vande AP, Malié A, et al. Observation and modeling of α-NiPtAl and Kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature. Surf Coat Technol. 2014;260:9–16. doi: 10.1016/j.surfcoat.2014.08.083
  • Wierzba B. The kirkendall and frenkel effects during 2D diffusion process. Physica A. 2014;413:71–76. doi: 10.1016/j.physa.2014.06.084
  • Yanga YF, Jiang CY, Bao ZB, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni,Pt)Al coating and the isothermal oxidation behaviour. Corr Sci. 2016;106:43–54. doi: 10.1016/j.corsci.2016.01.024
  • Li D, Wang L, Peng H, et al. Cyclic oxidation behavior of β-NiAlDy alloys containing varying aluminum content at 1200°C. Progr Nat Sci Mater Int. 2012;22(4):311–317. doi: 10.1016/j.pnsc.2012.06.003
  • Cadoret Y, Bacos MP, Josso P, et al. Effect of Pt additions on the sulfur segregation, void formation and oxide scale growth of cast nickel aluminides. Mater Sci Forum. 2004;461–464:247–254. doi: 10.4028/www.scientific.net/MSF.461-464.247
  • Przybylski K, Yurek GJ. The influence of implanted yttrium on the mechanisms of growth of chromia scales. Mater Sci Forum. 1989;43:1–74. doi: 10.4028/www.scientific.net/MSF.43.1
  • Guo H, Wang D, Zhang T, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 °C. Corr Sci. 2013;66:125–135. doi: 10.1016/j.corsci.2012.09.010
  • Evans HE. Cracking and spalling of protective oxide layers. Mater Sci Eng A. 1989;120-121:139–146. doi: 10.1016/0921-5093(89)90731-4
  • Evans HE. Stress effects in high-temperature oxidation of metals. Int Mater Rev. 1995;40:1–40. doi: 10.1179/imr.1995.40.1.1
  • Evans HE, Donaldson AT, Gilmour TC. Mechanisms of breakaway oxidation and application to a chromia-forming steel. Oxid Met (Basel). 1999;52:379–402. doi: 10.1023/A:1018855914737
  • Pilling NB, Bedworth RE. The oxidation of metals at high temperatures. J Inst Met. 1923;29:529–582.
  • Schütze M. Deformation and cracking behaviour of protective oxide scales on heat resistant steels under tensile strain. Oxid Met (Basel). 1985;24:199–232. doi: 10.1007/BF00664232
  • Schütze M. The healing behaviour of protective oxide scales on heat-resistant steels after cracking under tensile strain. Oxid Met (Basel). 1986;25:409–421. doi: 10.1007/BF01072918
  • Karunaratne MSA, Kyaw S, Jones A, et al. Modelling the coefficient of thermal expansion in Ni-based superalloys and bond coatings. J Mater Sci. 2016;51:4213–4226. doi: 10.1007/s10853-015-9554-3
  • Osgerby S, Berriche-Bouhanek K, Evans HE. Tensile cracking of a chromia layer on a stainless steel during thermal cycling with hold periods. Mater Sci Eng A. 2005;412:182–190. doi: 10.1016/j.msea.2005.08.193

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.