Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 8
111
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of applied voltage on the microstructure and properties of hydroxyapatite bioceramic coatings formed on Ti7Cu5Sn titanium alloy by micro-arc oxidation

Pages 582-590 | Received 21 May 2018, Accepted 14 Aug 2018, Published online: 23 Aug 2018

References

  • Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Tech Adv Mater. 2003;4:445–454. doi: 10.1016/j.stam.2003.09.002
  • Okazaki Y, Rao S, Tateishi T, et al. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater Sci Eng A. 1998;243:250–256. doi: 10.1016/S0921-5093(97)00809-5
  • Yuan B, Li H, Gao Y, et al. Passivation and oxygen ion implantation double surface treatment on porous NiTi shape memory alloys and its Ni suppression performance. Surf Coat Tech. 2009;204:58–63. doi: 10.1016/j.surfcoat.2009.06.029
  • Morant C, Lopez MF, Gutierrez A, et al. AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials. Appl Surf Sci. 2003;220:79–87. doi: 10.1016/S0169-4332(03)00746-3
  • Kotharu V, Nagumothu R, Arumugam CB, et al. Fabrication of corrosion resistant, bioactive and antibacterial silver substituted hydroxyapatite/titania composite coating on Cp Ti. Ceram Int. 2012;38:731–40. doi: 10.1016/j.ceramint.2011.07.065
  • Li J. Behaviour of titanium and titania-based ceramics in vitro and in vivo. Biomaterials. 1993;14:229–232. doi: 10.1016/0142-9612(93)90028-Z
  • Venkateswarlu K, Rameshbabu N, Sreekanth D, et al. Role of electrolyte additives on in-vitro electrochemical behavior of micro arc oxidized titania films on Cp Ti. Appl Surf Sci. 2012;258:6853–6863. doi: 10.1016/j.apsusc.2012.03.118
  • Bruni S, Martinesi M, Stio M, et al. Effects of surface treatment of Ti–6Al–4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomater. 2005;1:223–234. doi: 10.1016/j.actbio.2004.11.001
  • Rao S, Ushida T, Tateishi T. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Biomed Mater Eng. 1996;6:79–86.
  • Zatta P, Drago D, Bolognin S, et al. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharm Sci. 2009;30:346–355. doi: 10.1016/j.tips.2009.05.002
  • Sousa SR, Barbosa MA. Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates. Biomaterials. 1996;17:397–404. doi: 10.1016/0142-9612(96)89655-4
  • Murray JL. Binary alloy phase diagrams: Cu–Ti. In: H Baker, editor. Alloy phase diagrams. Metals Park (OH): ASM International; 1987. p. 180.
  • Tsao LC. Basic electrochemical behavior of Ti-7Cu alloys for medical applications. Acta Phys Pol A. 2012;122:561–564. doi: 10.12693/APhysPolA.122.561
  • Takada Y, Okuno O. Corrosion characteristics of α-Ti and Ti2Cu composing Ti-Cu alloys. Dent Mater J. 2005;24:610–616. doi: 10.4012/dmj.24.610
  • Shirai T, Tsuchiya H, Shimizu T, et al. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91:373–380. doi: 10.1002/jbm.b.31412
  • Kawahara H, Ochi S, Tanetani K, et al. Biological test of dental materials, effect of pure metals upon the mouse subcutaneous fibroblast, strain L cell in tissue culture. Japan Soc Dent Appar Mater. 1963;4:65–85.
  • Lütjering G, Williams JC. Titanium. 3rd ed. Berlin: Springer-Verlag; 2003. p. 13–50.
  • Tsao LC, Wu RW, Wu MW, et al. Formation of ultrafine structure in as cast Ti7CuXSn alloys. Mater Sci Tech. 2013;29:1529–1536. doi: 10.1179/1743284713Y.0000000257
  • Tsao LC. Effect of Sn addition on the corrosion behavior of Ti–7Cu–Sn cast alloys for biomedical applications. Mater Sci Eng C. 2015;46:246–252. doi: 10.1016/j.msec.2014.10.037
  • Li LH, Kong YM, Kim HW, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–2875. doi: 10.1016/j.biomaterials.2003.09.048
  • Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24:3893–3907. doi: 10.1016/S0142-9612(03)00261-8
  • Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Tech. 2000;125:407–414. doi: 10.1016/S0257-8972(99)00612-X
  • Tkalcec E, Sauer M, Nonninger R, et al. Sol-gel-derived hydroxyapatite powders and coatings. J Mater Sci. 2001;36:5253–5263. doi: 10.1023/A:1012462332440
  • Weng J, Liu Q, Wolke JGC, et al. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials. 1997;18:1027–1035. doi: 10.1016/S0142-9612(97)00022-7
  • Chang SY, Lin HK, Tsao LC, et al. Effect of voltage on microstructure and corrosion resistance of micro arc oxidation coatings on CP-Ti. Corr Eng Sci Tech. 2014;49:17–22. doi: 10.1179/1743278213Y.0000000097
  • Chen HT, Hsiao CH, Long HY, et al. Micro-arc oxidation of β-titanium alloy: structural characterization and osteoblast compatibility. Surf Coat Tech. 2009;204:1126–1131. doi: 10.1016/j.surfcoat.2009.06.043
  • Chen GJ, Wang Z, Bai H, et al. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants. Biomed Mater. 2009;4:015017. doi: 10.1088/1748-6041/4/1/015017
  • Groessner-Schreiber B, Tuan RS. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci. 1992;101:209–217.
  • Yuan H, Kurashina K, de Bruijn JD. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799–1806. doi: 10.1016/S0142-9612(99)00075-7
  • Gomi K, Lowenberg B, Shapiro G, et al. Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials. 1993;14:91–96. doi: 10.1016/0142-9612(93)90216-O
  • Mour M, Das D, Winkler T, et al. Advances in porous biomaterials for dental and orthopaedic application. Materials. 2010;3:2947–2974. doi: 10.3390/ma3052947
  • Larsson C, Thomsen P, Aronsson BO, et al. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials. 1996;17:605–616. doi: 10.1016/0142-9612(96)88711-4
  • D'Lima DD, Lemperle SM, Chen PC, et al. Bone response to implant surface morphology. J Arthroplasty. 1998;13:928–934. doi: 10.1016/S0883-5403(98)90201-7
  • Li Z, Yuan Y, Jing X. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg–Li alloy. J Alloy Comp. 2012;541:380–391. doi: 10.1016/j.jallcom.2012.06.139
  • Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng: R. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001
  • Su PB, Wu XH, Guo Y, et al. Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60Mg alloy. J Alloy Comp. 2009;475:773–777. doi: 10.1016/j.jallcom.2008.08.030
  • Guo HF, An MZ. Growth of ceramic coatings on AZ91D magnesium alloys bymicro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance. Appl Surf Sci. 2005;246:229–238. doi: 10.1016/j.apsusc.2004.11.031
  • Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
  • Kitsugi T, Yamamuro T, Nakamura T, et al. Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials. 1995;16:1101–1107. doi: 10.1016/0142-9612(95)98907-V
  • Dorozhkin SV. Calcium orthophosphates occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 2011;1:121–164. doi: 10.4161/biom.18790
  • Guo D, Xu K, Han Y. Influence of cooling modes on purity of solid-state synthesized tetracalcium phosphate. Mater Sci Eng B. 2005;116:175–181. doi: 10.1016/j.mseb.2004.09.032
  • Han Y, Hong SH, Xu K. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf Coat Tech. 2003;168:249–258. doi: 10.1016/S0257-8972(03)00016-1
  • Elghniji K, Saad MEK, Araissi M, et al. Chemical modification of TiO2 by H2PO4-/HPO42- anions using the sol-gel route with controlled precipitation and hydrolysis: enhancing thermal stability. Mater Sci Poland. 2014;32:617–625. doi: 10.2478/s13536-014-0237-6
  • Jayaraman M, Meyer U, Bühner M, et al. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25:625–631. doi: 10.1016/S0142-9612(03)00571-4
  • Song WH, Jun YK, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials. 2004;25:3341–3349. doi: 10.1016/j.biomaterials.2003.09.103
  • Ni JH, Shi YL, Yan FY, et al. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation. Mater Res Bull. 2008;43:45–53. doi: 10.1016/j.materresbull.2007.02.019
  • Wang T, Dorner-Reisel A, Muller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 2004;24:693–698. doi: 10.1016/S0955-2219(03)00248-6
  • Ou SF, Chiou SY, Ou KL. Phase transformation on hydroxyapatite decomposition. Ceram Int. 2013;39:3809–3816. doi: 10.1016/j.ceramint.2012.10.221
  • Han Y, Sun J, Huang X. Formation mechanism of HA-based coatings by micro-arc oxidation. Electrochem Comm. 2008;10:510–513. doi: 10.1016/j.elecom.2008.01.026
  • Heidenau F, Mittelmeier W, Detsch R, et al. Analysis of the release characteristics of Cu-treated antimicrobial implant surfaces using atomic absorption spectrometry. J Mater Sci Mater Med. 2005;16:883–888. doi: 10.1007/s10856-005-4422-3
  • Wu HB, Zhang XY, Geng ZH, et al. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings. Appl Surf Sci. 2014;308:43–49. doi: 10.1016/j.apsusc.2014.04.081
  • Velten D, Biehl V, Aubertin F. Preparation of TiO2 layers on cp-Ti and Ti6Al4 V by thermal and anodic oxidation and by sol–gel coating techniques and their characterization. J Biomed Mate Res. 2002;59:18–28. doi: 10.1002/jbm.1212
  • Benea L, Mardare-Danaila E, Mardare M J, et al. Preparation of titanim oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution. Corr Sci. 2014;80:331–338. doi: 10.1016/j.corsci.2013.11.059
  • Anawati H, Tanigawa H, Asoh T, et al. Electrochemical corrosion and bioactivity of titanium–hydroxyapatite composites prepared by spark plasma sintering. Corr Sci. 2013;70:212–220. doi: 10.1016/j.corsci.2013.01.032
  • Cheng S, Wei D, Zhou Y, et al. Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium. Ceram Int. 2011;37:1761–1768. doi: 10.1016/j.ceramint.2011.03.006
  • Trépanier C, Tabrizian M, Yahia LH, et al. Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res B. 1998;43:433–440. doi: 10.1002/(SICI)1097-4636(199824)43:4<433::AID-JBM11>3.0.CO;2-#
  • Duarte LT, Biaggio SR, Rocha-Filho RC, et al. Preparation and characterization of biomimetically and electrochemically deposited hydroxyapatite coatings on micro-arc oxidized Ti–13Nb–13Zr. J Mater Sci Mater Med. 2011;22:1663–1670. doi: 10.1007/s10856-011-4338-z
  • Assis SL, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta. 2006;51:1815–1819. doi: 10.1016/j.electacta.2005.02.121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.