Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 54, 2019 - Issue 3
303
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Application of hierarchical linear modelling to corrosion prediction in different atmospheric environments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 266-275 | Received 07 Dec 2018, Accepted 30 Jan 2019, Published online: 11 Feb 2019

References

  • Roberge PR, Klassen RD, Haberecht PW. Atmospheric corrosivity modeling – a review. Mater Des. 2002;23:321–330. doi: 10.1016/S0261-3069(01)00051-6
  • Knotkova D, Dean SW, Kreislova K. ISOCORRAG, international atmospheric exposure program: summary of results, DS71-EB. West Conshohocken (PA): ASTM; 2010.
  • Morcillo M. Atmospheric corrosion in Ibero-America: the MICAT project. Philadelphia (PA): ASTM Special Technical; 1995.
  • W.H. Abbott, A decade of corrosion monitoring in the world’s military operating environments: a summary of results. Pentagon-based DoD Corrosion Office, 2008.
  • Tidblad J, Kucera V, Ferm M, et al. Effects of air pollution on materials and cultural heritage: ICP materials celebrates 25 years of research. Int J Corros. 2012;2012:1–16. doi: 10.1155/2012/496321
  • Tidblad J, Kucera V, Mikhailov AA, et al. UN ECE ICP materials: dose-response functions on dry and wet acid deposition effects after 8 years of exposure. Water Air Soil Pollut. 2001;130:1457–1462. doi: 10.1023/A:1013965030909
  • Abbott WH. Corrosion management – where are you going and how will you know when you get there. Tri-Service Corrosion Conference; 2003; Las Vegas, NV. p. 5.
  • Kinzie R, Abbott WH. An experimental study of the effects of wash-rinse intervals on corrosion. Tri Service Corrosion Conference; 2005; Orlando, FL.
  • Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. a review. Corros Sci. 2013;77:6–24. doi: 10.1016/j.corsci.2013.08.021
  • Fuente DDL, Castaño JG, Morcillo M. Long-term atmospheric corrosion of zinc. Corros Sci. 2007;49:1420–1436. doi: 10.1016/j.corsci.2006.08.003
  • Sun S, Zheng Q, Li D, et al. Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments. Corros Sci. 2009;51:719–727. doi: 10.1016/j.corsci.2009.01.016
  • Leygraf C, Wallinder IO, Tidblad J, et al. Atmospheric corrosion. New Jersey: Wiley; 2016.
  • Knotkova D, Boschek P, Kreislova K. Results of ISO CORRAG program: processing of one-year data in respect to corrosivity classification. Philadelphia (PA): ASTM Special Technical; 1995.
  • Mikhailov AA, Tidblad J, Kucera V. The classification system of ISO 9223 standard and the dose-response functions assessing the corrosivity of outdoor atmospheres. Prot Metals Phys Chem Surf. 2004;40:541–550.
  • Dean SW, Reiser DB. Analysis of long-term atmospheric corrosion results from ISO CORRAG program. ASTM STP 1421, Outdoor Atmospheric Corrosion; 2002; West Conshohocken, PA. ASTM. p. 3–18.
  • Hernández-Lloreda MAV, Colmenares F, Arias RMN. Application of hierarchical linear modelling to the study of trajectories of behavioural development. Anim Behav. 2003;66:607–613. doi: 10.1006/anbe.2003.2241
  • Wu YWB, Clopper RR, Wooldridge PJ. A comparison of traditional approaches to hierarchical linear modeling when analyzing longitudinal data. Res Nurs Health. 1999;22:421–432. doi: 10.1002/(SICI)1098-240X(199910)22:5<421::AID-NUR8>3.0.CO;2-Q
  • Van der Leeden R. Multilevel analysis of longitudinal data. Longitudinal Data Anal. 1998;1:268–315.
  • Osborne JW. The advantages of hierarchical linear modeling, Practical assessment. Res Eval. 2000;7:1–3.
  • Hox JJ, Kreft IGG. Multilevel analysis methods. Sociol Methods Res. 1994;22:283–299. doi: 10.1177/0049124194022003001
  • Ciarleglio MM, Makuch RW. Hierarchical linear modeling: an overview. Child Abuse Negl. 2007;31:91–98. doi: 10.1016/j.chiabu.2007.01.002
  • Panchenko YM, Marshakov AI. Prediction of first-year corrosion Losses of carbon steel and zinc in continental regions. Materials (Basel). 2017;10(4):422–449. doi: 10.3390/ma10040422
  • Davis CS. Statistical methods for the analysis of repeated measurements. Basel, Switzerland: Springer; 2002.
  • Hoeksma JB, Mc VDB. Multilevel modelling of longitudinal cephalometric data explained for orthodontists. Eur J Orthod. 1991;13:197–201. doi: 10.1093/ejo/13.3.197
  • Raudenbush SW, Bryk AS. Hierarchical linear models: applications and data analysis methods. 2nd ed. Washington: Sage; 2004.
  • ISO 9223. Corrosion of metals and alloys – corrosivity of atmospheres – classification, determination and estimation. Brussels: European Committee for Standardization; 2012.
  • Hierarchical Linear and Nonlinear Modeling. Available from: http://www.ssicentral.com/hlm/index.html.
  • ISO 9224. Corrosion of metals and alloys – corrosivity of atmospheres – guiding values for the corrosivity categories; 2012.
  • Fuente DDL, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel. Corros Sci. 2011;53:604–617. doi: 10.1016/j.corsci.2010.10.007
  • Stanners JF. Protection against atmospheric corrosion: theories and methods. Corros Eng SciTechnol. 2013;11:121–121.
  • Panchenko YM. Kinetics gravimetric parameters corrosions process. Corros Mater Prot. 2013;4:1–7.
  • Panchenko YM, Marshakov AI. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function. Corros Sci. 2016;109:217–229. doi: 10.1016/j.corsci.2016.04.002
  • Melchers RE. A new interpretation of the corrosion loss processes for weathering steels in marine atmospheres. Corros Sci. 2008;50:3446–3454. doi: 10.1016/j.corsci.2008.09.003
  • Díaz I, Cano H, Chico B, et al. Some clarifications regarding literature on atmospheric corrosion of weathering steels. Int J Corros. 2012;2011:37–43.
  • Panchenko YM, Marshakov AI, Igonin TN, et al. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function. Corros Sci. 2014;88:306–316. doi: 10.1016/j.corsci.2014.07.049
  • Cai YK, Zhao Y, Ma XB, et al. Long-Term prediction of atmospheric corrosion loss in various field environments. Corrosion. 2018;74:669–682. doi: 10.5006/2706
  • Kim SMY, Tsujino Y. Assessment of the effect of air pollution on material damages in Northeast Asia. Atmos Environ. 2004;38:37–48. doi: 10.1016/j.atmosenv.2003.09.045
  • Townsend HE. Outdoor atmospheric corrosion, ASTM STP 1421. West Conshohocken (PA): American Society for Testing and Materials; 2002.
  • Escobar LA, Meeker WQ. A review of accelerated test models. Stat Sci. 2006;21:552–577. doi: 10.1214/088342306000000321
  • Vernon WHJ. Second experimental report to the atmospheric corrosion research committee. Trans. Faraday Soc. 1924;19:839–845. doi: 10.1039/tf9241900839
  • Castaño JG, Fuente DDL, Morcillo M. A laboratory study of the effect of NO2 on the atmospheric corrosion of zinc. Atmos Environ. 2007;41:8681–8696. doi: 10.1016/j.atmosenv.2007.07.022
  • Samie F, Tidblad J, Kucera V, et al. Atmospheric corrosion effects of HNO3—influence of temperature and relative humidity on laboratory-exposed copper. Atmos Environ. 2007;41:1374–1382. doi: 10.1016/j.atmosenv.2006.10.018
  • Feliu S, Mariaca L, Simancas J, et al. Effect of NO2 and/or SO2 atmospheric contaminants and relative humidity on copper corrosion. Revista De Metalurgia. 2003;39:278–288. doi: 10.3989/revmetalm.2003.v39.i4.339
  • Schindelholz E, Risteen BE, Kelly RG. Effect of relative humidity on corrosion of steel under sea salt aerosol proxies II. MgCl2, artificial seawater. J Electrochem Soc. 2014;161(10):C460–C470. doi: 10.1149/2.0231410jes
  • Schindelholz E, Kelly RG, Cole IS, et al. Comparability and accuracy of time of wetness sensing methods relevant for atmospheric corrosion. Corros Sci. 2013;67:233–241. doi: 10.1016/j.corsci.2012.10.026
  • Cai Y, Zhao Y, Ma X, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment. Corros Sci. 2018;137:163–175. doi: 10.1016/j.corsci.2018.03.042
  • Tidblad J. Acid deposition effects on materials: evaluation of Nickel and copper. J Electrochem Soc. 1991;138:3592–3598. doi: 10.1149/1.2085464
  • Kucera V. Reduction of air pollutants – a tool for control of atmospheric corrosion. Revista De Metalurgia. 2003;39:55–61. doi: 10.3989/revmetalm.2003.v39.iExtra.1097
  • Takazawa H. Effect of NO2 on the atmospheric corrosion of metals. Zairyo-to-Kankyo. 1989;34:612–617.
  • Arroyave C, Morcillo M. Climatic chamber study of the role of NOx on the atmospheric corrosion of steel international corrosion. Proceedings of the 13th International Corrosion Congress; 1996; Melbourne, Australia. p. 25–29.
  • Cole IS, Muster T, Azmat N, et al. Multiscale modelling of the corrosion of metals under atmospheric corrosion. Electrochim Acta. 2011;56:1856–1865. doi: 10.1016/j.electacta.2010.10.025
  • Panchenko YM, Strekalov P, Zhilikov V, et al. Corrosion resistance of D16 alloy depending on the salinity and meteorological parameters of coastal atmosphere. Prot Metals Phys Chem Surf. 2012;48:740–750. doi: 10.1134/S2070205112070118
  • Cai J, Cottis RA, Lyon SB. Phenomenological modelling of atmospheric corrosion using an artificial neural network. Corros Sci. 1999;41:2001–2030. doi: 10.1016/S0010-938X(99)00024-4
  • Kenny ED, Paredes RSC, Lacerda LAD, et al. Artificial neural network corrosion modeling for metals in an equatorial climate. Corros Sci. 2009;51:2266–2278. doi: 10.1016/j.corsci.2009.06.004
  • Pintos S, Queipo NV, Rincón OTD, et al. Artificial neural network modeling of atmospheric corrosion in the MICAT project. Corros Sci. 2000;42:35–52. doi: 10.1016/S0010-938X(99)00054-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.