Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 54, 2019 - Issue 5
154
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Corrosion inhibition of carbon steel in diethanolamine–H2O–CO2 system by some organic sulphur compounds

&
Pages 413-421 | Received 12 Mar 2019, Accepted 12 Apr 2019, Published online: 21 May 2019

References

  • Saiwan C, Supap T, Idem RO, et al. Part 3: corrosion and prevention in post-combustion CO2 capture systems. Carbon Manage. 2011;2:659–675. doi: 10.4155/cmt.11.63
  • Reed RM. Stabilization of monoethanolamine solutions. U.S. Patent 2,377,966. 1945.
  • Minevski LV, Anderson SB, Cady MA. Corrosion inhibitor for alkanolamine units. U.S. Patent 5,843,373. 1998.
  • Minevski LV, Gaboury JA. Thiacrown ether compound corrosion inhibitors for alkanolamine units. U.S. Patent 6,187,227. 2001.
  • Chang ZY, Minevski L, Lue P. Polythiaether compounds and their use as corrosion inhibitors. U.S. Patent 6,974,553. 2005.
  • Clouse RC, Asperger RG. Inhibitor for gas conditioning solutions. U.S. Patent 4,102,804. 1978.
  • Jones LW, Alkire JD. Corrosion inhibitor for amine gas sweetening systems. U.S. Patent 4,541,946. 1985.
  • Minevski LV. Corrosion inhibitor for alkanolamine units. U.S. Patent 5,885,487. 1999.
  • Minevski LV, Lambousy AL. Corrosion inhibitor for alkanolamine units. U.S. Patent 5,843,299. 1998.
  • Minevski LV. Corrosion inhibitor for alkanolamine units. U.S. Patent 6,036,888. 2000.
  • Veawab A, Tontiwachwuthikul P, Chakma A. Investigation of low-toxic organic corrosion inhibitors for CO2 separation process using aqueous MEA solvent. Ind Eng Chem Res. 2001;40:4771–4777. doi: 10.1021/ie010248c
  • Srinivasan S. Environmentally-friendly corrosion inhibitors for the amine-based CO2 absorption process [MSc]. Saskatchewan: Faculty of Engineering. University of Regina; 2012.
  • Zheng L, Landon J, Koebcke NC, et al. Suitability and stability of 2-mercaptobenzimidazole as a corrosion inhibitor in a post-combustion CO2 capture system. Corrosion. 2015;71:692–702. doi: 10.5006/1524
  • Obot IB, Macdonald DD, Gasem ZM. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An Overview. Corros Sci. 2015;99:1–30.
  • Gece G. The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci. 2008;50:2981–2992. doi: 10.1016/j.corsci.2008.08.043
  • Kakaei MN, Neshati J, Hoseiny H, et al. A non-equilibrium approach to study the corrosion behavior of carbon steel in diethanolamine–H2O–CO2 systems. Corros Sci. 2016;104:132–143. doi: 10.1016/j.corsci.2015.12.004
  • Marcus P, Mansfeld FB. Analytical methods in corrosion science and engineering. Boca Raton: CRC press; 2005.
  • Shreir LL, Jarman RA, Corrosion BG. Vol. 2: corrosion control. 3rd ed Oxford: Butterworth-Heinemann; 2000.
  • Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem. 1984;176:275–295. doi: 10.1016/S0022-0728(84)80324-1
  • Galvão TLP, Kuznetsova A, Gomes JRB, et al. A computational UV–Vis spectroscopic study of the chemical speciation of 2-mercaptobenzothiazole corrosion inhibitor in aqueous solution. Theor Chem Acc. 2016;135:78. doi: 10.1007/s00214-016-1839-3
  • Liu G, Zeng H, Lu Q, et al. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: a density functional theory study of structure–reactivity relations. Colloids Surf A. 2012;409:1–9. doi: 10.1016/j.colsurfa.2012.04.036
  • Tanaka H, Kuroiwa Y, Takata M. Electrostatic potential of ferroelectric PbTiO3: visualized electron polarization of Pb ion. Phys Rev B. 2006;74:172105. doi: 10.1103/PhysRevB.74.172105
  • Gholami M, Danaee I, Maddahy MH, et al. Correlated ab initio and electroanalytical study on inhibition behavior of 2-mercaptobenzothiazole and its thiole–thione tautomerism effect for the corrosion of steel (API 5L X52) in sulphuric acid solution. Ind Eng Chem Res. 2013;52:14875–14889. doi: 10.1021/ie402108g
  • Boraei AAA, Ahmed IT, Hamed MMA. Acid dissociation constants of some mercaptobenzazoles in aqueous-organic solvent mixtures. J Chem Eng Data. 1996;41:787–790. doi: 10.1021/je960016y
  • Yüce A O, Mert B D, Kardaş G, et al. Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corros Sci. 2014;83:310–316. doi: 10.1016/j.corsci.2014.02.029
  • Ohsawa M, Matsuda H, Suëtaka W. Behavior of mercaptobenzothiazole on silver electrodes by surface-enhanced Raman scattering. Chem Phys Lett. 1981;84:163–166. doi: 10.1016/0009-2614(81)85392-4
  • Musiani MM, Mengoli G, Fleischmann M, et al. An electrochemical and SERS investigation of the influence of pH on the effectiveness of some corrosion inhibitors of copper. J Electroanal Chem Interfacial Electrochem. 1987;217:187–202. doi: 10.1016/0022-0728(87)85073-8
  • Shervedani RK, Hatefi-Mehrjardi A, Babadi MK. Comparative electrochemical study of self-assembled monolayers of 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, and 2-mercaptobenzimidazole formed on polycrystalline gold electrode. Electrochim Acta. 2007;52:7051–7060. doi: 10.1016/j.electacta.2007.05.030
  • Perrin FX, Pagetti J. Characterization and mechanism of direct film formation on a Cu electrode through electro-oxidation of 2-mercaptobenzimidazole. Corros Sci. 1998;40:1647–1662. doi: 10.1016/S0010-938X(98)00060-2
  • Kovačević N, Milošev I, Kokalj A. The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. inhibitor–copper bonding. Corros Sci. 2015;98:457–470. doi: 10.1016/j.corsci.2015.05.041
  • Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. experimental characterization. Corros Sci. 2015;98:107–118. doi: 10.1016/j.corsci.2015.05.006
  • Thierry D, Leygraf C. Simultaneous Raman spectroscopy and electrochemical studies of corrosion inhibiting molecules on copper. J Electrochem Soc. 1985;132:1009–1014. doi: 10.1149/1.2114005
  • Madueño R, García-Raya D, Viudez AJ, et al. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode. Langmuir. 2007;23:11027–11033. doi: 10.1021/la701231d
  • Siimenson C, Lembinen M, Oll O, et al. Electrochemical investigation of 1-ethyl-3-methylimidazolium bromide and tetrafluoroborate mixture at Bi(111) electrode interface. J Electrochem Soc. 2016;163:H723–H730. doi: 10.1149/2.0111609jes
  • Watanabe T, Shimizu TK, Tateyama Y, et al. Giant electric double-layer capacitance of heavily boron-doped diamond electrode. Diamond Relat Mater. 2010;19:772–777. doi: 10.1016/j.diamond.2010.02.022
  • Milošev I, Kovačević N, Kokalj A. Effect of mercapto and methyl groups on the efficiency of imidazole and benzimidazole-based inhibitors of iron corrosion. Acta Chim Slov. 2016;63:544–559. doi: 10.17344/acsi.2016.2326
  • Cui B, Chen T, Wang D, et al. In situ STM evidence for the adsorption geometry of three n-heteroaromatic thiols on Au(111). Langmuir. 2011;27:7614–7619. doi: 10.1021/la201155y
  • Finšgar M, Kek Merl D. An electrochemical, long-term immersion, and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution. Corros Sci. 2014;83:164–175. doi: 10.1016/j.corsci.2014.02.016
  • Doubova LM, De Battisti A, Daolio S, et al. Adsorption of n-pentanol from KPF6 aqueous solution on the (100) and (110) faces of Ag single crystal electrodes. J Electroanal Chem. 2001;500:134–146. doi: 10.1016/S0022-0728(00)00314-4
  • Becucci L, Innocenti M, Bellandi S, et al. Permeabilization of mercury-supported biomimetic membranes by amphotericin B and the role of calcium ions. Electrochim Acta. 2013;112:719–726. doi: 10.1016/j.electacta.2013.09.027
  • Doneux T, Nichols RJ. Adsorption of adipic acid conjugates at the Au(111) electrode|aqueous solution interface. J Electroanal Chem. 2010;649:95–101. doi: 10.1016/j.jelechem.2010.02.003
  • Alam MT, Islam MM, Okajima T, et al. Ionic liquid structure dependent electrical double layer at the mercury interface. J Phys Chem C. 2008;112:2601–2606. doi: 10.1021/jp7098043
  • Trasatti S. Acquisition and analysis of fundamental parameters in the adsorption of organic substances at electrodes. J Electroanal Chem Interfacial Electrochem. 1974;53:335–363. doi: 10.1016/S0022-0728(74)80074-4
  • Lazarides C, Allen PD, Hampson NA, et al. Synergism in corrosion inhibition. Surf Technol. 1979;9:159–169. doi: 10.1016/0376-4583(79)90020-7
  • Bockris JOM, Conway BE, Yeager E. Comprehensive treatise of electrochemistry: the double layer. New York: Plenum Press; 1980.
  • Narayan R, Hackerman N. Adsorption of thiourea and derivatives at the In-Hg electrolyte interface. J Electrochem Soc. 1971;118:1426–1430. doi: 10.1149/1.2408343
  • Ruzanov A, Karu K, Ivaništšev V, et al. Interplay between the hydrophilicity of metal electrodes and their interfacial capacitance. Electrochim Acta. 2016;210:615–621. doi: 10.1016/j.electacta.2016.05.110
  • Bockris JOM, Reddy AKN. Gamboa-Aldeco ME. modern electrochemistry 2A: fundamentals of electrodics. 2nd ed New York: Kluwer Academic Publishers; 2002.
  • Richardson TJA. Shreir's corrosion. 4th ed. Amsterdam: Elsevier; 2010.
  • Cruz J, Garcia-Ochoa E, Castro M. Experimental and theoretical study of the 3-amino-1,2,4-triazole and 2-aminothiazole corrosion inhibitors in carbon steel. J Electrochem Soc. 2003;150:B26–B35. doi: 10.1149/1.1528197
  • Kronenberg ML, Banter JC, Yeager E, et al. The electrochemistry of nickel: II. anodic polarization of nickel. J Electrochem Soc. 1963;110:1007–1013. doi: 10.1149/1.2425910
  • Agonafer DD, Chainani E, Oruc ME, et al. Study of insulating properties of alkanethiol self-assembled monolayers formed under prolonged incubation using electrochemical impedance spectroscopy. J Nanotechnol Eng Med. 2013;3:031006–1. doi: 10.1115/1.4007698
  • Srinivasan S. Fuel cells: from fundamentals to applications. New York: Springer US; 2006.
  • Finšgar M. 2-Mercaptobenzimidazole as a copper corrosion inhibitor: part II. surface analysis using X-ray photoelectron spectroscopy. Corros Sci. 2013;72:90–98. doi: 10.1016/j.corsci.2013.03.010
  • Ansar SM, Haputhanthri R, Edmonds B, et al. Determination of the binding affinity, packing, and conformation of thiolate and thione ligands on gold nanoparticles. Journal Phys Chem C. 2011;115:653–660. doi: 10.1021/jp110240y
  • Wilson S. Electron correlation in molecules. New York: Dover Publications; 2007.
  • Schultze JW, Koppitz FD. Bond formation in electrosorbates—I correlation between the electrosorption valency and pauling's electronegativity for aqueous solutions. Electrochim Acta. 1976;21:327–336. doi: 10.1016/0013-4686(76)85022-0
  • Schultze JW, Vetter KJ. Experimental determination and interpretation of the electrosorption valency γ. J Electroanal Chem Interfacial Electrochem. 1973;44:63–81. doi: 10.1016/S0022-0728(73)80515-7
  • Conway BE. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc. 1991;138:1539–1548. doi: 10.1149/1.2085829

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.