Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 54, 2019 - Issue 6
186
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and corrosion behaviour of ferritic steel–Zr-based metal waste form alloys in simulated ground water

, ORCID Icon, ORCID Icon &
Pages 529-540 | Received 18 Dec 2018, Accepted 21 May 2019, Published online: 04 Jun 2019

References

  • Priya R, George RP, Thyagarajan K, et al. Microbiologically influenced corrosion of ferritic steel-zirconium-based metal waste form alloy under simulated geological repository environment. Corros Eng Sci Tech. 2018;53:340–347. doi: 10.1080/1478422X.2018.1470397
  • Abraham DP, McDeavitt SM, Park J. Metal waste forms from the electrometallurgical treatment of spent nulcear fuel, Proc. DOE Spent Nuclear Fuel & Fissile Material Management, 1996 Jun 16–20; Reno, Nevada, American Nuclear Society, LaGrange Park, Illinois.
  • Keiser DD, McDeavitt SM. Actinide-containing metal disposition alloys, 1996. Proc. DOE Spent Nuclear Fuel & Fissile Material Management: 1996 Jun 16–20; Reno, Nevada, American Nuclear Society, LaGrange Park, Illinois.
  • McDeavitt SM, Park JY, Ackerman JP. Defining a metal-based waste form for IFR pyroprocessing wastes, actinide processing: methods and materials. B. Mishra and W.A. Averill, editors Minerals, Metals & Materials Society, Warendale, Pennsylvania; 1994. p. 305–319.
  • Abraham DP, McDeavitt SM, Park JY. Microstructure and phase identification in type 304 stainless steel-zirconium alloys. Metall Mater Trans. 1996;27A:2151–2159. doi: 10.1007/BF02651870
  • Janney DE. Host phases for actinides in simulated metallic waste form. J Nucl Mater. 2003;323:81–92. doi: 10.1016/j.jnucmat.2003.08.032
  • Abraham DP, Richardson JW, McDeavitt SM. Laves intermetallics in stainless steel-zirconium alloys. Mater Sci Eng A. 1997;239-240:658–664. doi: 10.1016/S0921-5093(97)00649-7
  • Abraham DP, Dietz N. Role of laves intermetallics in nuclear waste disposal. Mater Sci Eng A. 2002;329–331:610–615. doi: 10.1016/S0921-5093(01)01512-X
  • Bairi LR, Ningshen S, Kamachi Mudali U, et al. Microstructural analysis and corrosion behavior of D9 stainless steel – zirconium metal waste form alloys. Corros Sci 2010;52:2291–2302. doi: 10.1016/j.corsci.2010.03.018
  • Bairi LR, Ningshen S, Kamachi Mudali U, et al. Corrosion issues related to disposal of 316 SS-zirconium metal waste form under simulated repository conditions. Corros Eng Sci Technol 2011;146:171–176. doi: 10.1179/1743278210Y.0000000019
  • Bairi LR, Pannerselvam G, Kamachi Mudali U, et al. High temperature phase stability and microstructural characterization of D9 stainless steel-zirconium metal waste form alloys. Trans Indian Inst Met. 2012;65:333–341. doi: 10.1007/s12666-012-0137-6
  • Bairi LR, Mallika C, Kamachi Mudali U. Influence of noble metal fission products and uranium on the microstructure and corrosion behaviour of D9 stainless steel–zirconium metal waste form alloy. J Nucl Mater. 2014;448:340–347. doi: 10.1016/j.jnucmat.2014.02.023
  • Chen J, Asmussen RM, Zagidulin D, et al. Electrochemical and corrosion behavior of a 304 stainless steel based metal waste form in dilute aqueous environments. Corros Sci 2013;66:142–152. doi: 10.1016/j.corsci.2012.09.012
  • Das N, Sengupta P, Roychowdhury S, et al. Metallurgical characterizations of Fe-Cr-Ni-Zr base alloys developed for geological disposal of radioactive hulls. J Nucl Mat. 2012;420:559–574. doi: 10.1016/j.jnucmat.2011.11.008
  • Gurumoorthy C, Sasidhar P, Arumugham V. Sub-surface investigations on deep saline groundwater of charnockite rock formation Kalpakkam, India. Environ Monit Assess. 2004;99:211–222. doi: 10.1023/B:EMAS.0000009237.06427.2b
  • Tatawat RK, Singh Chandel CP. Quality of ground water of Jaipur city, Rajasthan (India) and its suitablility for domestic and irrigation purpose. Appl Ecol Env Res 2008;6:79–88. doi: 10.15666/aeer/0602_079088
  • Granovsky MS, Arias D. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram. J Nucl Mater. 1996;229:29–35. doi: 10.1016/0022-3115(95)00207-3
  • Scudino S, Donnadieu P, Surreddi KB, et al. Microstructure and mechanical properties of Laves phase-reinforced Fe-Zr-Cr alloys. Intermetallics. 2009;17:532–539. doi: 10.1016/j.intermet.2009.01.007
  • Yang Y, Tan L, Bei H, et al. Thermodynamic modeling and experimental study of the Fe-Cr-Zr system. J Nucl Mater. 2013;441:190–202. doi: 10.1016/j.jnucmat.2013.05.061
  • Liu Y, Livingston JD, Allen SM. Room temperature deformation and stress induced phase transformation of Laves phases in Fe-10 At. Pct Zr alloys. Metall Mater Trans A. 1992;23A:3303–3308.
  • Jegdic B, Drazic DM, Popic JP. Open circuit potentials of metallic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them. Corros Sci. 2008;50:1235–1244. doi: 10.1016/j.corsci.2008.01.012
  • Frankel GS. Pitting corrosion of metals a review of the critical factors. J Electrochem Soc. 1998;145:2186–2198. doi: 10.1149/1.1838615
  • Smialowska S. Mechanism of pit nucleation by electrical breakdown of the passive film. Corros Sci. 2002;44:1143–1149. doi: 10.1016/S0010-938X(01)00113-5
  • Lu Y, Dong J, Ke W. Effects of Cl- ions on the corrosion behavior of low alloy steel in deaerated bicarbonate solutions. J Mat Sci Tech. 2016;32:341–348. doi: 10.1016/j.jmst.2015.11.015
  • Burstein GT. 2.02 Passivity and localized corrosion. Shreir’s Corrosion. 2010;2:731–752. doi: 10.1016/B978-044452787-5.00198-0
  • Mankowski J, Smialowska ZS. Studies on accumulation of chloride ions in pits growing during anodic polarization. Corros Sci. 1975;15:493–501. doi: 10.1016/0010-938X(75)90015-3
  • Niu LB, Nakada K. Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel. Corros Sci. 2015;96:171–177. doi: 10.1016/j.corsci.2015.04.005
  • Das N, Sengupta P, Abraham G, et al. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique. Mat Res Bull. 2016;80:295–302. doi: 10.1016/j.materresbull.2016.04.016
  • Murai T, Isobe T, Mae Y. Polarization curves of precipitates in zirconium alloys. J Nucl Mater. 1995;226:327–329. doi: 10.1016/0022-3115(95)00100-X
  • Ruhi G, Modi OP, Singh IB. Corrosion behavior of nano-structured sol-gel alumina coated 9Cr-1Mo ferritic steel in chloride bearing environments. Surf Coats Tech. 2009;204:359–365. doi: 10.1016/j.surfcoat.2009.07.044
  • Lu Y, Dong J, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions. J Mat Sci Tech. 2015;31:1047–1058. doi: 10.1016/j.jmst.2014.10.013
  • Carmezim MJ, Simoes AM, Montemor MF, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros Sci. 2005;47:581–591. doi: 10.1016/j.corsci.2004.07.002
  • Alexander CL, Tribollet B, Orazema ME. Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. Capacitance. Electrochim Acta. 2016;188:566–573. doi: 10.1016/j.electacta.2015.11.135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.