Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 54, 2019 - Issue 8
358
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Long-term corrosion resistance of zinc-rich paint using functionalised multi-layer graphene-tripolyphosphate: in situ creation of zinc phosphate as corrosion inhibitor

, &
Pages 698-714 | Received 06 May 2019, Accepted 22 Aug 2019, Published online: 04 Sep 2019

References

  • Meroufel A, Touzain S. EIS characterization of new zinc rich powder coatings. Prog Org Caot. 2007;59(3):197–205. doi: 10.1016/j.porgcoat.2006.09.005
  • Wicks ZW, Jr, Jones FN, Pappas SP, et al. Organic coatings: science and technology. 3rd ed. New York: Wiley; 1994.
  • Walkner S, Hassel AW. Combined chemical and EIS study of the reaction of zinc coatings under alkaline conditions. Electrochim Acta. 2014;131:130–136. doi: 10.1016/j.electacta.2013.12.177
  • Park S, Shon MY. Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating. J Ind Eng Chem. 2015;21(3):1258–1264. doi: 10.1016/j.jiec.2014.05.042
  • Schaefer K, Miszczyk A. Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc. Corros Sci. 2013;66:380–391. doi: 10.1016/j.corsci.2012.10.004
  • Arianpouya M, Nematollahi M, Arianpouya N, et al. Novel properties of a conductive polymeric coating with an insulating nano additive. Prog Org Caot. 2016;90:369–379. doi: 10.1016/j.porgcoat.2015.07.018
  • Hare CH. Zinc-rich primers I: design principles. J Prot Coat Linings. 1998;15:17–38.
  • Shreepathi S, Bajaj P, Mallik BP. Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: role of Zn content on corrosion protection mechanism. Electrochim Acta. 2010;55(18):5129–5134. doi: 10.1016/j.electacta.2010.04.018
  • Berendsen AM. Ship painting: current practice and systems in Europe. Prot Coat Europe. 1998;4:24–33.
  • Shao Y, Jia C, Meng G, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros Sci. 2009;51:371–379. doi: 10.1016/j.corsci.2008.11.015
  • Meroufel A, Deslouis C, Touzain S. Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings. Electrochim Acta. 2008;53(5):2331–2338. doi: 10.1016/j.electacta.2007.09.056
  • Cubides Y, Castaneda H. Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions. Corros Sci. 2016;109:145–161. doi: 10.1016/j.corsci.2016.03.023
  • Marchebois H, Savall C, Bernard J, et al. Electrochemical behavior of zinc-rich powder coatings in artificial sea water. Electrochim Acta. 2004;49(17–18):2945–2954. doi: 10.1016/j.electacta.2004.01.053
  • Jalili M, Rostami M, Ramezanzadeh B. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminium nanoparticle. Appl Surf Sci. 2015;328:95–108. doi: 10.1016/j.apsusc.2014.12.034
  • Gergely A, Pfeifer É, Bertóti I, et al. Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole. Corros Sci. 2011;53(11):3486–3499. doi: 10.1016/j.corsci.2011.06.014
  • Jagtap RN, Patil PP, Hassan SZ. Effect of zinc oxide in combating corrosion in zinc-rich primer. Prog Org Coat. 2008;63(4):389–394. doi: 10.1016/j.porgcoat.2008.06.012
  • Gidice C, Benftez JC, Linares MM. Zinc-rich epoxy primers based on lamellar zinc dust. Surf Coat Int. 1997;80(6):279–284. doi: 10.1007/BF02692668
  • Arman SY, Ramezanzadeh B, Farghadani S, et al. Application of the electrochemical noise to investigate the corrosion resistance of an epoxy zinc-rich coating loaded with lamellar aluminum and micaceous iron oxide particles. Corros Sci. 2013;77:118–127. doi: 10.1016/j.corsci.2013.07.034
  • Arianpouya N, Shishesaz M, Arianpouya M, et al. Evaluation of synergistic effect of nanozinc/nanoclay additives on the corrosion performance of zinc-rich polyurethane nanocomposite coatings using electrochemical properties and salt spray testing. Surf Coat Tech. 2013;216:199–206. doi: 10.1016/j.surfcoat.2012.11.036
  • Zhang L, Ma A, Jiang J, et al. Anti-corrosion performance of waterborne Zn rich coating with modified silicon-based vehicle and lamellar Zn (Al) pigments. Prog Natur Sci Mater Int. 2012;22(4):326–333. doi: 10.1016/j.pnsc.2012.07.001
  • Kakaei MN, Danaee I, Zaarei D. Investigation of corrosion protection afforded by inorganic anticorrosive coatings comprising micaceous iron oxide and zinc dust. Corros Eng Sci Technol. 2013;48(3):194–198. doi: 10.1179/1743278212Y.0000000060
  • Hayatdavoudi H, Rahsepar M. Smart inhibition action of layered double hydroxide nano containers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate. J Alloy Compd. 2017;711:560–567. doi: 10.1016/j.jallcom.2017.04.044
  • Ramezanzadeh B, Mohamadzadeh Moghadam MH, Shohani N, et al. Effects of highly cystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chem Eng J. 2017;320:363–375. doi: 10.1016/j.cej.2017.03.061
  • Xiao F, Qian C, Guo M, et al. Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite. Prog Org Coat. 2018;125:79–88. doi: 10.1016/j.porgcoat.2018.08.027
  • Tenga S, Gaob Y, Cao F, et al. Zinc-reduced graphene oxide for enhanced corrosion protection of zinc-rich epoxy coatings. Prog Org Coat. 2018;123:185–189. doi: 10.1016/j.porgcoat.2018.07.012
  • Cheng L, Liu C, Han D, et al. Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings. J Alloy Compd. 2019;774(5):255–264. doi: 10.1016/j.jallcom.2018.09.315
  • Mohammadi S, Roohi H. Influence of functionalized multi-layer graphene on adhesion improvement and corrosion resistance performance of zinc-rich epoxy primer. Corros Eng Sci Techn. 2018;53(6):422–430. doi: 10.1080/1478422X.2018.1495679
  • Li Y, Jing T, Xu G, et al. 3-D magnetic graphene oxide-magnetite poly (vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer (Guildf). 2018;149:13–22. doi: 10.1016/j.polymer.2018.06.046
  • Wang X, Liu X, Yuan H, et al. Noncovalently functionalized graphene strengthened poly (vinyl alcohol). Mater Des. 2018;139:372–379. doi: 10.1016/j.matdes.2017.11.023
  • Wu Y, Wen S, Chen K, et al. Enhanced corrosion resistance of waterborne polyurethane containing sulfonated graphene/zinc phosphate composites. Prog Org Coat. 2019;132:409–416. doi: 10.1016/j.porgcoat.2019.04.013
  • Alibakhshi E, Naeimi A, Ramezanzadeh M, et al. A facile synthesis method of an effective anti-corrosion nanopigment based on zinc polyphosphate through microwaves assisted combustion method; comparing the influence of nanopigment and conventional zinc phosphate on the anti-corrosion properties of an epoxy coating. J Alloy Compd. 2018;762:730–744. doi: 10.1016/j.jallcom.2018.05.172
  • Deya M, Di Sarli AR, Amo B, Romagnoli R. Performance of anticorrosive coatings containing tripolyphosphates in aggressive environments. Ind Eng Chem Res. 2008;47:7038–7047.
  • Naderi R, Attar MM. Electrochemical assessing corrosion inhibiting effects of zinc aluminum polyphosphate (ZAPP) as a modified zinc phosphate pigment. Electrochim Acta. 2008;53:5692–5696. doi: 10.1016/j.electacta.2008.03.029
  • Alibakhshi E, Ghasemi E, Mahdavian M. Corrosion inhibition by lithium zinc phosphate pigment. Corros Sci. 2013;77:222–229. doi: 10.1016/j.corsci.2013.08.005
  • Askari F, Ghasemi E, Ramezanzadeh B, et al. The corrosion inhibitive properties of various kinds of potassium zincphosphate pigments: solution phase and coating phase studies. Prog Org Coat. 2015;85:109–122. doi: 10.1016/j.porgcoat.2015.03.018
  • Deya MC, Blustein G, Romagnoli R, et al. The influence of the anion type on the anticorrosive behaviour of inorganic phosphates. Surf Coat Technol. 2002;150:133–142. doi: 10.1016/S0257-8972(01)01522-5
  • Mohammadi S, Shariatpanahi H, Afshar Taromi F, et al. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel. Mater Res Bull. 2016;80:7–22. doi: 10.1016/j.materresbull.2015.06.052
  • Fahim I, Tridane M, Belaaouada S. Physico-chemical studies of MgNa3P3O10·12 H2O. MATEC Web Conf. 2013;5:04035. doi:10.1051/matecconf/20130504035.
  • Iares-Mulqoz M, Flores-Gonzales L, Perez-Bernal M, et al. Intercalation compounds of trimethylphosphate in graphitic oxide. J Inclusion Phenom. 1984;1:411–417. doi: 10.1007/BF00665484
  • Hang TX, Truc TA, Nam TH, et al. Corrosion protection of carbon steel by an epoxy resin containing organically modified clay. Surf Coat Technol. 2007;201(16–17):7408–7415. doi: 10.1016/j.surfcoat.2007.02.009
  • Cachet C, Ganne F, Joiret S, et al. EIS investigation of zinc dissolution in aerated sulphate medium. Electrochim Acta. 2002;47(3):3409–3422. doi: 10.1016/S0013-4686(02)00277-3
  • Jafari H, Danaee I, Eskandari H, et al. Combined computational and experimental study on the adsorption and inhibition effects of N2O2 Schiff base on corrosion of API 5L grade B steel in 1 mol/L HCl. J Mater Sci Technol. 2014;30(3):239–252. doi: 10.1016/j.jmst.2014.01.003
  • Abreu C, Izquierdo M, Keddam M, et al. Electrochemical Behaviors of zinc-rich epoxy paints in 3% NaCl solution. Electrochim Acta. 1996;41(15):2405–2415. doi: 10.1016/0013-4686(96)00021-7
  • Chen A, Xu D, Chen X, et al. Measurements of zinc oxide solubility in sodium hydroxide solution from 25 to 100°C. Trans Nonferrous Met Soc China. 2012;22(6):1513–1516. doi: 10.1016/S1003-6326(11)61349-6
  • Yan S, He W, Sun C, et al. The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigments 2009;80(2):254–258. doi: 10.1016/j.dyepig.2008.06.010
  • Simpson T. Accelerated corrosion test for aluminum-zinc alloy coatings. Corrosion. 1993;49(7):550–560. doi: 10.5006/1.3316084
  • Wu Y, Wang Y, Zhang D, et al. Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. J Power Sources. 2011;196(3):1141–1144. doi: 10.1016/j.jpowsour.2010.07.087
  • Ogle K, Morel S, Meddahi N. An electrochemical study of the delamination of polymer coatings on galvanized steel. Corros Sci. 2005;47(8):2034–2052. doi: 10.1016/j.corsci.2004.08.017
  • Coslett T. British Patent, 16,300 (1909).
  • Somasundaran P, Dianzou W. Solution chemistry: minerals and reagents (developments in mineral processing book 17). 1st ed. New York: Elsevier Science; 2006.
  • Reichle RA, McCurdy KG, Hepler LG. Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75°C. Can J Chem. 1975;53:3841–3845. doi: 10.1139/v75-556
  • Herrmann R, García-García F, Reller A. Rapid degradation of zinc oxide nanoparticles by phosphate ions. Beilstein J Nanotechnol. 2014;5:2007–2015. doi: 10.3762/bjnano.5.209
  • Clever H, Derrick M, Johnson S. The solubility of some sparingly soluble salts of zinc and cadmium in water and in aqueous electrolyte solutions. J Phys Chem Ref Data. 1992;21:941–1004. doi: 10.1063/1.555909
  • Mousavifard SM, MalekMohammadi Nouri P, Attar MM, et al. The effects of zinc aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) mixtures on corrosion inhibition performance of epoxy/polyamide coating. J Ind Eng Chem. 2013;19:1031–1039. doi: 10.1016/j.jiec.2012.11.027
  • Heydarpour MR, Zarrabi A, Attar MM, et al. Studying the corrosion protection properties of an epoxy coatingcontaining different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments. Prog Org Coat. 2014;77:160–167. doi: 10.1016/j.porgcoat.2013.09.003
  • Dey M, Vetere VF, Romagnoli R, et al. Zinc tripolyphosphate: an anticorrosive pigment for paints. Surf Coat Int B Coat Trans. 2003;86:1–90. doi: 10.1007/BF02699587
  • Van Wazer JR, Griffith EJ, McCullough JF. Structure and properties of the condensed phosphates. VII. Hydrolytic degradation of pyro- and tripolyphosphate. J Am Chem Soc. 1955;77:287–291. doi:10.1080/1478422X.2019.1661132 doi: 10.1021/ja01607a011
  • Vetere VF, Deyá MC, Romagnoli R, et al. Calcium tripolyphosphate: an anticorrosive pigment for paints. J Coat Technol. 2001;73:57–63. doi: 10.1007/BF02698398
  • Deyá MC, Vetere VF, Romagnoli R, et al. Zinc tripolyphosphate: an anticorrosive pigment for paints. Surf Coat Int. 2003;86:79–85. doi: 10.1007/BF02699598

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.