Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 55, 2020 - Issue 3
276
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

High temperature oxidation of alloy 617, 740, HR6W and Sanicro 25 in supercritical water at 650°C

, & ORCID Icon
Pages 196-204 | Received 27 Sep 2019, Accepted 23 Dec 2019, Published online: 06 Jan 2020

References

  • Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers. Int J Pres Ves Pip. 2006;83:778–783. doi: 10.1016/j.ijpvp.2006.08.006
  • Wright IG, Dooley R. A review of the oxidation behaviour of structural alloys in steam. Int Mater Rev. 2010;55:129–167. doi: 10.1179/095066010X12646898728165
  • Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700°C and above. Engineering. 2015;1:211–224. doi: 10.15302/J-ENG-2015031
  • Zhang NQ, Zhu ZL, Lv FB, et al. Influence of exposure pressure on oxidation behavior of the ferritic-martensitic steel in steam and supercritical water. Oxid Met. 2016;86:113–124. doi: 10.1007/s11085-016-9624-1
  • Li YH, Xu TT, Wang SZ, et al. Modelling and analysis of the corrosion characteristics of ferritic-martensitic steels in supercritical water. Materials. 2019;12:20.
  • Zhong XY, Wu XQ, Han EH. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water. Corros Sci. 2015;90:511–521. doi: 10.1016/j.corsci.2014.10.022
  • Bischoff J, Motta AT, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water. J Nucl Mater. 2013;441:604–611. doi: 10.1016/j.jnucmat.2012.09.037
  • Zhang NQ, Yue GQ, Lv FB, et al. Oxidation of low-alloy steel in high temperature steam and supercritical water. Mater High Temp. 2017;34:222–228. doi: 10.1080/09603409.2017.1286549
  • Wright I, Dooley R. Steam-side scale morphologies associated with scale exfoliation from ferritic steel T22. Mater High Temp. 2013;30:168–182. doi: 10.3184/096034013X13756933883521
  • Liang ZY, Zhao QX. High temperature oxidation of Fe-Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam. Mater High Temp. 2019;36:87–96. doi: 10.1080/09603409.2018.1465712
  • Perez-Gonzalez FA, Garza-Montes-de Oca N, Colas R. High temperature oxidation of the Haynes 282© nickel-based superalloy. Oxid Met. 2014;82:145–161. doi: 10.1007/s11085-014-9483-6
  • Holcomb GR. High pressure steam oxidation of alloys for advanced ultra-supercritical conditions. Oxid Met. 2014;82:271–295. doi: 10.1007/s11085-014-9491-6
  • Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review. J Supercrit Fluids. 2004;29:1–29. doi: 10.1016/S0896-8446(03)00031-7
  • Martinelli L, Balbaud-Celerier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I). Corros Sci. 2008;50:2523–2536. doi: 10.1016/j.corsci.2008.06.050
  • Watanabe Y, Yi Y, Kondo T, et al. Steam oxidation of ferritic heat-resistant steels for ultra supercritical boilers. Zairyo-to-Kankyo. 2001;50:50–56. doi: 10.3323/jcorr1991.50.50
  • Angell MG, Lister SK, Rudge A. 2008. The effect of steam pressure on the oxidation behaviour of annealed 9Cr 1Mo boiler tubing materials. 15th International Conference on the Properties of Water and Steam (ICPWS XV), Berlin. p. 8–11.
  • Yang JQ, Wang SZ, Tang XY, et al. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water. J Supercrit Fluids. 2018;131:1–10. doi: 10.1016/j.supflu.2017.07.008
  • Chang KH, Huang JH, Yan CB, et al. Corrosion behavior of alloy 625 in supercritical water environments. Prog Nucl Energy. 2012;57:20–31. doi: 10.1016/j.pnucene.2011.12.015
  • Zhang Z, Wang J, Han E-H, et al. Influence of dissolved oxygen on oxide films of alloy 690TT with different surface status in simulated primary water. Corros Sci. 2011;53:3623–3635. doi: 10.1016/j.corsci.2011.07.012
  • Yang JQ, Wang SZ, Xu DH, et al. Effect of ammonium chloride on corrosion behavior of Ni-based alloys and stainless steel in supercritical water gasification process. Int J Hydrogen Energy. 2017;42:19788–19797. doi: 10.1016/j.ijhydene.2017.05.078
  • Yang J, Wang S, Li Y, et al. Novel design concept for a commercial-scale plant for supercritical water oxidation of industrial and sewage sludge. J Environ Manag. 2019;233:131–140. doi: 10.1016/j.jenvman.2018.11.142
  • Was GS, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water. J Nucl Mater. 2007;371:176–201. doi: 10.1016/j.jnucmat.2007.05.017
  • Ehlers J, Young DJ, Smaardijk EJ, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments. Corros Sci. 2006;48:3428–3454. doi: 10.1016/j.corsci.2006.02.002
  • Jacob Y, Haanappel V, Stroosnijder M, et al. The effect of gas composition on the isothermal oxidation behaviour of PM chromium. Corros Sci. 2002;44:2027–2039. doi: 10.1016/S0010-938X(02)00022-7
  • Michalik M, Hänsel M, Zurek J, et al. Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050°C. Mater High Temp. 2005;22:213–221. doi: 10.3184/096034005782744443
  • Ani MHB, Kodama T, Ueda M, et al. The effect of water vapor on high temperature oxidation of Fe-Cr alloys at 1073 K. Mater Trans. 2009;50:2656–2663. doi: 10.2320/matertrans.M2009212
  • Lobnig RE, Schmidt HP, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys. Oxid Met. 1992;37:81–93. doi: 10.1007/BF00665632

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.