Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 55, 2020 - Issue 3
147
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Effect of silty sand on the pre-passivation behaviour of 1Cr steel in a CO2 aqueous environment

, , , &
Pages 205-216 | Received 10 Jul 2019, Accepted 06 Jan 2020, Published online: 15 Jan 2020

References

  • Barker R, Hu X, Neville A. The influence of high shear and sand impingement on preferential weld corrosion of carbon steel pipework in CO2-saturated environments. Tribol Int. 2013;68:17–25. doi: 10.1016/j.triboint.2012.11.015
  • Liu HX, Zhou ZW, Liu MY. A probability model of predicting the sand erosion profile in elbows for gas flow. Wear. 2015;342:377–390. doi: 10.1016/j.wear.2015.09.012
  • Malka R, Nesic S, Gulino DA. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow. Wear. 2007;262(7–8):791–799. doi: 10.1016/j.wear.2006.08.029
  • Rincon H, Shadley JR, Rybicki EF, et al. Erosion-corrosion of carbon steel in CO2 saturated multiphase flows containing sand. Corrosion; 2006 Mar 12–16. San Diego (CA): NACE; 2006.
  • Wang C, Neville A. Study of the effect of inhibitors on erosion-corrosion in CO2-saturated condition with sand. Aberdeen (TX): Society of Petroleum Engineers; 2009.
  • Guo HX, Lu BT, Luo JL. Interaction of mechanical and electrochemical factors in erosion corrosion of carbon steel. Electrochim Acta. 2005;51(2):315–323. doi: 10.1016/j.electacta.2005.04.032
  • Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. J Nat Gas Sci Eng. 2014;21:850–873. doi: 10.1016/j.jngse.2014.10.001
  • Zheng ZB, Zheng YG, Zhou X, et al. Determination of the critical flow velocities for erosion–corrosion of passive materials under impingement by NaCl solution containing sand. Corros Sci. 2014;88:187–196. doi: 10.1016/j.corsci.2014.07.043
  • Huang J, Brown B, Jiang X, et al. Internal CO2 corrosion of mild steel pipelines under inert solid deposits. corrosion. Houston (TX): NACE; 2011 Mar 13–17.
  • Indira K, Nishimura T. SECM study of effect of chromium content on the localized corrosion behavior of low-alloy steels in Chloride environment. J Mater Eng Perform. 2016;25(10):4157–4170. doi: 10.1007/s11665-016-2280-4
  • Xu LN, Wang B, Zhu JY, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment. Appl Surf Sci. 2016;379:39–46. doi: 10.1016/j.apsusc.2016.04.049
  • Sun JB, Sun C, Wang Y. Effect of Cr content on the electrochemical behavior of low-chromium X65 steel in CO2 environment. Int J Electrochem Sci. 2016;11(10):8599–8611. doi: 10.20964/2016.10.58
  • Kermani B, Dougan M, Gonzalez JC, et al. Development of low carbon Cr-Mo steels with exceptional corrosion resistance for oil field applications. Corrosion. Houston (TX): NACE; 2001 Mar 11–16.
  • Wang B, Xu LN, Zhu JY, et al. Observation and analysis of pseudopassive film on 6.5%Cr steel in CO2 corrosion environment. Corros Sci. 2016;111:711–719. doi: 10.1016/j.corsci.2016.06.006
  • Lu SL, Liu W, Zhang SA, et al. Corrosion performance of carbon steel in CO2 aqueous environment containing silty sand with different sizes. Acta Metall Sin. 2017;30(11):1055–1066. doi: 10.1007/s40195-017-0645-9
  • Liu W, Dou JJ, Lu SL, et al. Effect of silty sand in formation water on CO2 corrosion behavior of carbon steel. Appl Surf Sci. 2016;367:438–448. doi: 10.1016/j.apsusc.2016.01.228
  • Liu W, Lu SL, Zhang P, et al. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO2 aqueous environment. Appl Surf Sci. 2016;379:163–170. doi: 10.1016/j.apsusc.2016.04.044
  • Guo SQ, Xu LN, Zhang L, et al. Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water. Corros Sci. 2016;110:123–133. doi: 10.1016/j.corsci.2016.04.033
  • Man C, Dong CF, Cui ZY, et al. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH. Appl Surf Sci. 2018;427:763–773. doi: 10.1016/j.apsusc.2017.08.151
  • Cui ZY, Wang LW, Ni HT, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates. Corros Sci. 2017;118:31–48. doi: 10.1016/j.corsci.2017.01.016
  • Kong DC, Dong CF, Zhao MF, et al. Effect of chloride concentration on passive film properties on copper. Corros Eng Sci Techn. 2018;53(2):122–130. doi: 10.1080/1478422X.2017.1413160
  • Tian HC, Cheng XQ, Wang Y, et al. Effect of Mo on interaction between α/γ phases of duplex stainless steel. Electrochim Acta. 2018;267:255–268. doi: 10.1016/j.electacta.2018.02.082
  • Kong DC, Dong CF, Xu AN, et al. The stability of passive film growth on copper in anaerobic sulphide solutions. Corros Eng Sci Techn. 2017;52(3):188–194. doi: 10.1080/1478422X.2016.1245945
  • Xu LN, Guo SQ, Chang W, et al. Corrosion of Cr bearing low alloy pipeline steel in CO2 environment at static and flowing conditions. Appl Surf Sci. 2013;270:395–404. doi: 10.1016/j.apsusc.2013.01.036
  • Lopez DA, Schreiner WH, de Sanchez SR, et al. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: an XPS and SEM characterization. Appl Surf Sci. 2004;236(1–4):77–97. doi: 10.1016/j.apsusc.2004.03.247
  • Lv WY, Pan C, Su W, et al. A study on atmospheric corrosion of 304 stainless steel in a simulated marine atmosphere. J Mater Eng Perform. 2015;24(7):2597–2604. doi: 10.1007/s11665-015-1544-8
  • Payne BP, Biesinger MC, McIntyre NS. X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces. J Electron Spectrosc. 2011;184(1-2):29–37. doi: 10.1016/j.elspec.2010.12.001
  • Guo SQ, Xu LN, Zhang L, et al. Corrosion of alloy steels containing 2% chromium in CO2 environments. Corros Sci. 2012;63:246–258. doi: 10.1016/j.corsci.2012.06.006
  • Choi YS, Shim JJ, Kim JG. Corrosion behavior of low alloy steels containing Cr, Co and W in synthetic potable water. Mat Sci Eng A-Struct. 2004;385(1-2):148–156. doi: 10.1016/S0921-5093(04)00836-6
  • Zhang NY, Zeng DZ, Zhang Z, et al. Effect of flow velocity on pipeline steel corrosion behaviour in H2S/CO2 environment with sulphur deposition. Corros Eng Sci Techn. 2018;53(5):370–377. doi: 10.1080/1478422X.2018.1476818
  • Edgell MJ, Bear DR, Castle JE. Biased referencing experiments for the XPS analysis of non-conducting materials. Appl Surf Sci. 1986;26(2):129–149. doi: 10.1016/0169-4332(86)90001-2
  • Lin XQ, Liu W, Wu F, et al. Effect of O2 on corrosion of 3Cr steel in high temperature and high pressure CO2-O2 environment. Appl Surf Sci. 2015;329:104–115. doi: 10.1016/j.apsusc.2014.12.109
  • Song S, Sohn D, Jennings HM, et al. Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci. 2000;35:249–257. doi: 10.1023/A:1004742027117
  • Sun JB, Zhang GA, Liu W, et al. The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution. Corros Sci. 2012;57:131–138. doi: 10.1016/j.corsci.2011.12.025
  • Bian C, Wang ZM, Han X, et al. Electrochemical response of mild steel in ferrous ion enriched and CO2 saturated solutions. Corros Sci. 2015;96:42–51. doi: 10.1016/j.corsci.2015.03.015
  • Kahyarian A, Singer M, Nesic S. Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: a review. J Nat Gas Sci Eng. 2016;29:530–549. doi: 10.1016/j.jngse.2015.12.052
  • Nesic S. Key issues related to modelling of internal corrosion of oil and gas pipelines – a review. Corros Sci. 2007;49(12):4308–4338. doi: 10.1016/j.corsci.2007.06.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.