Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 56, 2021 - Issue 1
223
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Electrochemical corrosion behaviour of Sn–Sb solder alloys: the roles of alloy Sb content and type of intermetallic compound

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 11-21 | Received 19 Oct 2019, Accepted 30 Jun 2020, Published online: 14 Jul 2020

References

  • Osório WR, Freitas ES, Spinelli JE, et al. Electrochemical behavior of a lead-free Sn-Cu solder alloy in NaCl solution. Corros Sci. 2014;80:71–81. doi: 10.1016/j.corsci.2013.11.010
  • Osório WR, Spinelli JE, Afonso CRM, et al. Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn-Cu solder alloy. Electrochim Acta. 2011;56:8891–8899. doi: 10.1016/j.electacta.2011.07.114
  • Septimio RS, Arenas MA, Conde A, et al. Correlation between microstructure and corrosion behaviour of Bi-Zn solder alloys. Corros Eng Sci Technol. 2019;54:362–368. doi: 10.1080/1478422X.2019.1600836
  • Gancarz T, Pstrus J, Berent K. Interfacial reacions of Sn-Zn-Ag-Cu alloy on soldered Al/Cu and Al/Al joints. Corros Eng Sci Technol. 2018;23:558–567. doi: 10.1080/13621718.2018.1427836
  • Shen J, Chan YC, Liu SY. Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn-Ag solder during solidification. Intermetallics. 2008;16:1142–1148. doi: 10.1016/j.intermet.2008.06.016
  • Abtew M, Selvaduray G. Lead-free solders in microelectronics. Mater Sci Eng R Rep. 2000;27:95–141. doi: 10.1016/S0927-796X(00)00010-3
  • McCormack M, Jin S, Kammlott GW, et al. New Pb-free solder alloy with superior mechanical properties. Appl Phys Lett. 1993;63:5–17. doi: 10.1063/1.109734
  • Shohji I, Gagg C, Plumbridge WJ. Creep properties of Sn-8mass%Zn-3mass%Bi lead-free alloy. J Electron Mater. 2004;33:923–927. doi: 10.1007/s11664-004-0222-7
  • Wang JF, Huang S, Guo SF, et al. Effects of cooling rate on microstructure, mechanical and corrosion properties of Mg-Zn-Ca alloy. Trans Nonferrous Met Soc China. 2013;23:1930–1935. doi: 10.1016/S1003-6326(13)62679-5
  • Gourlay CM, Nogita K, Read J, et al. Intermetallic formation and fluidity in Sn-rich Sn-Cu-Ni alloys. J Electron Mater. 2010;39:56–69. doi: 10.1007/s11664-009-0962-5
  • Goulart PR, Cruz KS, Spinelli JE, et al. Cellular growth during transient directional solidification of hypoeutectic Al-Fe alloys. J Alloys Compd. 2009;470:589–599. doi: 10.1016/j.jallcom.2008.03.026
  • Laxmanan V. Comments on the evolution of cellular and primary dendritic spacings in directionally solidified Ni-Al-Cr-Fe alloys. Scr Mater. 1998;38:581–588. doi: 10.1016/S1359-6462(97)00527-7
  • Sanchez AHM, Luthringer BJC, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates: a review. Acta Biomater. 2015;13:16–31. doi: 10.1016/j.actbio.2014.11.048
  • Mori M, Miura K, Sasaki T, et al. Corrosion of tin alloys in sulfuric and nitric acids. Corros Sci. 2002;44:887–898. doi: 10.1016/S0010-938X(01)00094-4
  • Rosalbino F, Angelini E, Zanicchi G, et al. Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution. Electrochim Acta. 2009;54:7231–7235. doi: 10.1016/j.electacta.2009.07.030
  • Mohanty US, Lin K. Electrochemical corrosion behaviour of lead-free Sn–8.5Zn–X Ag–0.1Al–0.5 Ga solder in 3.5% NaCl solution. Mater Sci Eng A. 2005;406:34–42. doi: 10.1016/j.msea.2005.05.101
  • Dias M, Costa TA, Silva BL, et al. A comparative analysis of microstructural features, tensile properties and wettability of hypoperitectic and peritectic Sn-Sb solder alloys. Microelectron Reliab. 2018;81:150–158. doi: 10.1016/j.microrel.2017.12.029
  • Dias M, Costa TA, Rocha O, et al. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn-Sb lead-free solder alloys. Mater Charact. 2015;106:52–61. doi: 10.1016/j.matchar.2015.05.015
  • Vafaeenezhad H, Seyedein SH, Aboutalebi MR, et al. Creep life prediction for Sn-5Sb lead-free solder alloy: model and experiment. Microelectron Eng. 2019;207:55–65. doi: 10.1016/j.mee.2019.01.006
  • Zoran Miric A, Grusd A. Lead-free alloys. Solder Surf Mt Tech. 1998;10:19–25. doi: 10.1108/09540919810203793
  • Okamoto H. Sb-Sn (antimony-Tin). J Phase Equilibria Diffus. 2012;33:347. doi: 10.1007/s11669-012-0054-8
  • Lysenko VA. Thermodynamic ressessment of the Sb-Sn and In-Sb-Sn systems. J Alloys Compd. 2019;776:850–857. doi: 10.1016/j.jallcom.2018.10.223
  • Gündüz M, Çadirli E. Directional solidification of aluminium – copper alloys. Mater Sci Eng A. 2002;327:167–185. doi: 10.1016/S0921-5093(01)01649-5
  • Spinelli JE, Silva BL, Garcia A. Microstructure, phases morphologies and hardness of a Bi-Ag eutectic alloy for high temperature soldering applications. Mater Des. 2014;58:482–490. doi: 10.1016/j.matdes.2014.02.026
  • Inorganic crystal structure database, crystallographic information framework (CIF) files. 2017. 20181206. Available from: http://www.fiz-karlsruhe.de/icsd.
  • Thewlis J, Davey AR. Thermal expansion of grey tin. Nature. 1954;174:1011. doi: 10.1038/1741011a0
  • Swanson HE, Gilfrich NT, Ugrinic GM. Standard X-ray diffraction powder patterns. US Government Print Office Circular National Bureau of Standards 539. 26; 1955.
  • Nogita K, Gourlay CM, McDonald SD, et al. XRD study of the kinetics of β ↔ transformations in tin. Philos Mag. 2013;93:3627–3647. doi: 10.1080/14786435.2013.820381
  • Schwartz M. Encyclopedia and handbook of materials, parts and finishes. Boca Raton (FL): CRC Press; 2016.
  • Kolobyanina TN, Kabalkina SS, Vereshchagin LF, et al. Polymorphic transformations in the antimony-bismuth system at high pressures. Sov Phys JETP. 1971;32:624–629.
  • Kolobyanina TN, Kabalkina SS, Vereshchagin LF, et al. A high-pressure unit for X-ray diffractometer DRON-1. High Temp – High Press. 1972;4:207–2011.
  • Goldschmidt VM. Geochemische Verteilungsgesetze der Elemente VIII: Untersuchungen über Bau und Eigenschaften von Krystallen, Skrifter Borske Videnskaps-Akad. Oslo I Mat.-Naturv. Kl.1926.
  • Rönnebro E, Yin J, Kitano A, et al. Comparative studies of mechanical and electrochemical lithiation of intermetallic nanocomposite alloys for anode materials in Li-ion batteries. Solid State Ionics. 2005;176:2749–2757. doi: 10.1016/j.ssi.2005.08.007
  • Hägg G, Hybinette AG. X-ray studies on the systems tin-antimony and tin-arsenic. Philos Mag J Sci. 1935;20:913–929. doi: 10.1080/14786443508561534
  • Norén L, Withers RL, Schmid S, et al. Old friends in a new light: ‘SnSb’ revisited. J Solid State Chem. 2006;179:404–412. doi: 10.1016/j.jssc.2005.10.031
  • Abbas H, Faizul M, Sabri M, et al. Electrochemical corrosion behavior of Sn-0. 7Cu solder alloy with the addition of bismuth and iron. J Alloy Compd. 2019;810:151925. doi: 10.1016/j.jallcom.2019.151925
  • Liao B, Cen H, Chen Z, et al. Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers. Corros Sci. 2018;143:347–361. doi: 10.1016/j.corsci.2018.08.041
  • Liu JC, Park SW, Nagao S, et al. The role of Zn precipitates and Cl- anions in pitting corrosion of Sn-Zn solder alloys. Corros Sci. 2015;92:263–271. doi: 10.1016/j.corsci.2014.12.014
  • Vuong BX, Vu NSH, Manh TD, et al. Role of cerium in microstructure and corrosion properties of Sn-1.0Ag solder alloys. Mater Lett. 2018;228:309–313. doi: 10.1016/j.matlet.2018.06.015
  • Liu JC, Zhang G, Ma JS, et al. Ti addition to enhance corrosion resistance of Sn-Zn solder alloy by tailoring microstructure. J Alloys Compd. 2015;644:113–118. doi: 10.1016/j.jallcom.2015.04.168
  • Liu JC, Zhang G, Nagao S, et al. Metastable pitting and its correlation with electronic properties of passive films on Sn-xZn solder alloys. Corros Sci. 2015;99:154–163. doi: 10.1016/j.corsci.2015.06.036
  • Bonora PL, Deflorian F, Fedrizzi L. Eletrochemical impedance spectroscoy as a tool for I investigating underpaint corrosion. Eletrochim Acta. 1996;41:1073–1082. doi: 10.1016/0013-4686(95)00440-8
  • Sánchez-Tovar R, Leiva-García R, García-Antón J. Characterization of thermal oxide films formed on a duplex stainless steel by means of confocal-Raman microscopy and electrochemical techniques. Thin Solid Films. 2015;576:1–10. doi: 10.1016/j.tsf.2014.12.024
  • Friesen G, Özsar ME, Dunlop ED. Impedance model for CdTe solar cells exhibiting constant phase element behaviour. Thin Solid Films. 2000;361:303–308. doi: 10.1016/S0040-6090(99)00764-6
  • Germain PS, Pell WG, Conway BE. Evaluation and origins of the difference between double-layer capacitance behaviour at Au-metal and oxidized Au surfaces. Electrochim Acta. 2005;49:1775–1788. doi: 10.1016/j.electacta.2003.12.009
  • Amirudin A, Thierry D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Progr Organic Coatings. 1995;26:1–28. doi: 10.1016/0300-9440(95)00581-1
  • Yasuda N, Miyayama M, Kudo T. Impedance analysis on electrical anisotropy of layer-structured Bi4V2(1-x)Co2xO11-[delta] single crystals. Mater Res Bull. 2001;36:323–333. doi: 10.1016/S0025-5408(00)00473-6
  • Hirschorn B, Orazem ME, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55:6218–6227. doi: 10.1016/j.electacta.2009.10.065
  • Stern M. A method for determining corrosion rates from linear polarization data. Corrosion. 1958;14:60–64. doi: 10.5006/0010-9312-14.9.60
  • Kapusta SD, Hackerman N. Anodic passivation of tin in slightly alkaline solutions. Electrochim Acta. 1980;25:1625–1639. doi: 10.1016/0013-4686(80)80016-8
  • Alvarez PE, Ribotta SB, Folquer ME, et al. Potentiodynamic behaviour of tin in different buffer solutions. Corros Sci. 2002;44:49–65. doi: 10.1016/S0010-938X(01)00032-4
  • Mohran HS, El-Sayed AR, El-Lateef HMA. Anodic behavior of tin, indium, and tin-indium alloys in oxalic acid solution. J Solid State Electrochem. 2009;13:1279–1290. doi: 10.1007/s10008-008-0676-2
  • Nazeri MFM, Mohamad AA. Corrosion measurement of Sn-Zn lead-free solders in 6M KOH solution. Meas. 2014;47:820–826. doi: 10.1016/j.measurement.2013.10.002
  • Wang M, Wang J, Ke W. Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder joints. Microelectron Reliab. 2017;73:69–75. doi: 10.1016/j.microrel.2017.04.017
  • Lorenz WJ. Determination of corrosion rates by electrochemical DC and AC methods. Corros Sci. 1981;21:647–672. doi: 10.1016/0010-938X(81)90015-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.