Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 56, 2021 - Issue 1
293
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Corrosion behaviour of 2205 DSS in the artificial industrial-marine environment

, , &
Pages 22-34 | Received 22 May 2020, Accepted 05 Jul 2020, Published online: 14 Jul 2020

References

  • Wu W, Liu Z, Hu S, et al. Effect of pH and hydrogen on the stress corrosion cracking behavior of duplex stainless steel in marine atmosphere environment. Ocean Eng. 2017;146:311–323. doi: 10.1016/j.oceaneng.2017.10.002
  • Hou Y, Zhao J, Cheng C, et al. The metastable pitting corrosion of 2205 duplex stainless steel under bending deformation. J Alloys Compd. 2020;830:154422. doi: 10.1016/j.jallcom.2020.154422
  • Kong D, Ni X, Dong C, et al. Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater Des. 2018;152:88–101. doi: 10.1016/j.matdes.2018.04.058
  • Conradi M, Schön PM, Kocijan A, et al. Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions. Mater Chem Phys. 2011;130:708–713. doi: 10.1016/j.matchemphys.2011.07.049
  • Jinlong L, Zhuqing W, Tongxiang L, et al. Enhancing the corrosion resistance of the 2205 duplex stainless steel bipolar plates in PEMFCs environment by surface enriched molybdenum. Results Phys. 2017;7:3459–3464. doi: 10.1016/j.rinp.2017.09.001
  • Kong D, Dong C, Ni X, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J Mater Sci Technol. 2019;35:1499–1507. doi: 10.1016/j.jmst.2019.03.003
  • Kong D, Dong C, Ni X, et al. Insight into the mechanism of alloying elements (Sn, Be) effect on copper corrosion during long-term degradation in harsh marine environment. Appl Surf Sci. 2018;455:543–553. doi: 10.1016/j.apsusc.2018.06.029
  • Wu W, Liu Z, Li X, et al. Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Mater Sci Eng A. 2019;759:124–141. doi: 10.1016/j.msea.2019.05.024
  • Tang J, Hu Y, Han Z, et al. Experimental and theoretical, study on the synergistic inhibition effect of pyridine derivatives and sulfur-containing compounds on the corrosion of carbon steel in CO2-Saturated 3.5 wt.% NaCl solution. Molecules. 2018;23:3270. doi: 10.3390/molecules23123270
  • Lv J, Guo W, Liang T. The effect of pre-deformation on corrosion resistance of the passive film formed on 2205 duplex stainless steel. J Alloy Compd. 2016;686:176–183. doi: 10.1016/j.jallcom.2016.06.003
  • Weng L. Corrosion behavior of weathering steel with high-content titanium exposed to simulated marine environment. Int J Electrochem Sci. 2018;13:5888–5903. doi: 10.20964/2018.06.61
  • Yang Y, Yan B, Li J, et al. The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel. Corros Sci. 2011;53:3756–3763. doi: 10.1016/j.corsci.2011.07.022
  • Örnek C, Engelberg DL. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel. Corros Sci. 2015;99:164–171. doi: 10.1016/j.corsci.2015.06.035
  • Jinlong L, Jin H, Tongxiang L. The effect of electrochemical nitridation on the corrosion resistance of the passive films formed on the 2205 duplex stainless steel. Mater Lett. 2019;256:126640. doi: 10.1016/j.matlet.2019.126640
  • Herbsleb G, Poepperling RK. Corrosion properties of austenitic-ferritic duplex steel AF 22 in chloride and sulfide containing environments. Corrosion. 1980;36:611–618. doi: 10.5006/0010-9312-36.11.611
  • Cheng X, Wang Y, Li X, et al. Interaction between austein-ferrite phases on passive performance of 2205 duplex stainless steel. J Mater Sci Technol. 2018;34:2140–2148. doi: 10.1016/j.jmst.2018.02.020
  • Jin S, Liu CM, Lin X, et al. Effect of inorganic anions on the corrosion behavior of UNS S32750 duplex stainless steel in chloride solution. Mater Corros. 2015;66(10):1077–1083. doi: 10.1002/maco.201408185
  • Tang J, Yang X, Wang Y, et al. Corrosion behavior of 2205 duplex stainless steels in HCl solution containing Sulfide. Metal. 2019;9:294. doi: 10.3390/met9030294
  • Huang BS, Yin WF, Sang DH, et al. Applied surface science synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit. Appl Surf Sci. 2012;259:664–670. doi: 10.1016/j.apsusc.2012.07.094
  • García-Rentería MA, López-Morelos VH, García-Hernández R, et al. Improvement of localised corrosion resistance of AISI 2205 duplex stainless steel joints made by gas metal arc welding under electromagnetic interaction of low intensity. Appl Surf Sci. 2014;321:252–260. doi: 10.1016/j.apsusc.2014.10.024
  • Tian H, Cheng X, Wang Y, et al. Effect of Mo on interaction between α/γ phases of duplex stainless steel. Electrochim Acta. 2018;267:255–268. doi: 10.1016/j.electacta.2018.02.082
  • Kong D, Ni X, Dong C, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim Acta. 2018;276:293–303. doi: 10.1016/j.electacta.2018.04.188
  • Wang L, Xing Y, Liu Z, et al. Erosion–corrosion behavior of 2205 duplex stainless steel in wet gas environments. J Nat Gas Sci Eng. 2016;35:928–934. doi: 10.1016/j.jngse.2016.09.029
  • Kong D, Ni X, Dong C, et al. Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting. Constr Build Mater. 2019;221(10):720–729. doi: 10.1016/j.conbuildmat.2019.06.132
  • Kong D, Dong C, Ni X, et al. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment. Corros Sci. 2020;108425. doi: 10.1016/j.corsci.2019.108425
  • Cheng J, Qing J, Guo Y, et al. High-strength weathering steels obtained using bainite matrix and nanoscale co-precipitation. Mater Lett. 2019;236:307–311. doi: 10.1016/j.matlet.2018.10.076
  • Zhang T, Wu J, Jin L, et al. Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG. J Mater Sci Technol. 2019;35:2630–2637. doi: 10.1016/j.jmst.2019.07.031
  • Del Abra-Arzola JL, García-Rentería MA, Cruz-Hernández VL, et al. Study of the effect of sigma phase precipitation on the sliding wear and corrosion behaviour of duplex stainless steel AISI 2205. Wear. 2018;400-401:43–51. doi: 10.1016/j.wear.2017.12.019
  • Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem. 1984;176:275–295. doi: 10.1016/S0022-0728(84)80324-1
  • Zhao Y, Liu W, Fan Y, et al. Effect of Cr content on the passivation behavior of Cr alloy steel in a CO2 aqueous environment containing silty sand. Corros Sci. 2020;168:108591. doi: 10.1016/j.corsci.2020.108591
  • Hakiki NE. Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel. Corros Sci. 2011;53:2688–2699. doi: 10.1016/j.corsci.2011.05.012
  • Hirschorn B, Orazem ME, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55:6218–6227. doi: 10.1016/j.electacta.2009.10.065
  • Martin U, Ress J, Bosch J, et al. Stress corrosion cracking mechanism of AISI 316LN stainless steel rebars in chloride contaminated concrete pore solution using the slow strain rate technique. Electrochim Acta. 2020;335:135565. doi: 10.1016/j.electacta.2019.135565
  • Kong D, Dong C, Ni X, et al. Corrosion of metallic materials fabricated by selective laser melting. NPJ Mater Degrad. 2019;3(1):1–14. doi: 10.1038/s41529-019-0086-1
  • Luo H, Li Z, Mingers AM, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci. 2018;134:131–139. doi: 10.1016/j.corsci.2018.02.031
  • Yang X, Du C, Wan H, et al. Influence of sulfides on the passivation behavior of titanium alloy TA2 in simulated seawater environments. Appl Surf Sci. 2018;458:198–209. doi: 10.1016/j.apsusc.2018.07.068
  • Li P, Zhao Y, Liu Y, et al. Effect of Cu addition to 2205 duplex stainless steel on the resistance against pitting corrosion by the Pseudomonas aeruginosa Biofilm. J Mater Sci Technol. 2017;33:723–727. doi: 10.1016/j.jmst.2016.11.020
  • Jinlong L, Tongxiang L, Chen W, et al. Comparison of corrosion properties of passive films formed on coarse grained and ultrafine grained AISI 2205 duplex stainless steels. J Electroanal Chem. 2015;757:263–269. doi: 10.1016/j.jelechem.2015.09.036
  • Kong D, Ni X, Dong C, et al. Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting. Mater Lett. 2019;235:1–5. doi: 10.1016/j.matlet.2018.09.152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.