Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 56, 2021 - Issue 1
224
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical and characterisation study of corrosion of reinforcing steel embedded in kaolinite: two-year exposure study

&
Pages 35-49 | Received 19 Feb 2020, Accepted 17 Jul 2020, Published online: 03 Aug 2020

References

  • Pacheco-Torgal F, Jalali S. Earth construction: lessons from the past for future eco–efficient construction. Constr Build Mater. 2012;29:512–519. doi: 10.1016/j.conbuildmat.2011.10.054
  • Alam I, Naseer A, Shah AA. Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Constr Build Mater. 2015;77:154–159. doi: 10.1016/j.conbuildmat.2014.12.046
  • Zami MS, Lee A. Economic benefits of contemporary earth construction in low-cost urban housing – state-of-the-art review. J Build Appraisal. 2010;5:259–2710. doi: 10.1057/jba.2009.32
  • Perrot A, Rangeard D, Levigneur A. Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater Struct. 2016;49:4647–4655. doi: 10.1617/s11527-016-0813-9
  • Perrot A, Rangeard D, Menasria F, et al. Strategies for optimizing the mechanical strengths of raw earth-based mortars. Constr Build Mater. 2018;167:496–504. doi: 10.1016/j.conbuildmat.2018.02.055
  • Neff D, Dillmann P, Descostes M, et al. Corrosion of iron archaeological artefacts in soil: estimation of the average corrosion rates involving analytical techniques and thermodynamic calculations. Corros Sci. 2006;48:2947–2970. doi: 10.1016/j.corsci.2005.11.013
  • Saheb M, Neff D, Dillmann P, et al. Long-term corrosion behaviour of low-carbon steel in anoxic environment: characterisation of archaeological artefacts. J Nucl Mater. 2008;379:118–123. doi: 10.1016/j.jnucmat.2008.06.019
  • Michelin A, Drouet E, Foy E, et al. Investigation at the nanometre scale on the corrosion mechanisms of archaeological ferrous artefacts by STXM. J Anal At Spectrom. 2013;28:59–66. doi: 10.1039/C2JA30250K
  • Neff D, Reguer S, Bellot-Gurlet L, et al. Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms. J Raman Spectrosc. 2004;35:739–745. doi: 10.1002/jrs.1130
  • Jeannin M, Calonnec D, Sabot R, et al. Role of a clay sediment deposit on the corrosion of carbon steel in 0.5 mol L-1 NaCl solutions. Corros Sci. 2010;52:2026–2034. doi: 10.1016/j.corsci.2010.02.033
  • El Mendili Y, Abdelouas A, Bardeau JF. Corrosion of P235GH carbon steel in simulated bure soil solution. J Mater Environ Sci. 2013;4:786–791.
  • ANDRA. 2005. Argiles. Tome 3: Corrosion des matériaux métalliques. Rapport Andra C.RP.ASCM.04.015/A.2005c, 363 pages.
  • Lantenois S, Lanson B, Muller F, et al. Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays Clay Miner. 2005;53:597–612. doi: 10.1346/CCMN.2005.0530606
  • Perronnet M. Réactivité des matériaux argileux dans un contexte de corrosion métallique, application au stockage des déchets radioactifs en site argileux. PhD Thesis. Institut National Polytechnique de Lorraine, Nancy, France; 2004.
  • Matthiesen H, Hilbert LR, Gregory DJ. Siderite as a corrosion product on archaeological iron from a Waterlogged environment. Studies in Conserv. 2003;48:183–194. doi: 10.1179/sic.2003.48.3.183
  • Jeannin M, Calonnec D, Sabot R, et al. Role of a clay sediment deposit on the passivity of carbon steel in 0,1 mol.dm-3 NaHCO3 solutions. Electrochim Acta. 2011;56:1466–1475. doi: 10.1016/j.electacta.2010.10.063
  • Martin F, Bataillon C, Schlegel M. Corrosion of iron and low-alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: an integrated experiment. J Nucl Mater. 2008;379:80–90. doi: 10.1016/j.jnucmat.2008.06.021
  • Galliano F, Gerwin W, Menzel K. In Metal 98 conference on metals conservation, Draguignan- Figaniéres, Mourey W, Robbiola (eds). James and James. France. 1998, pp. 87–91.
  • Foct F, Cabrera J, Dridi W, et al. Corrosion behaviour of carbon steel in the Tournemire clay. Eurocorr 2004, proceedings of the 2nd International workshop: Prediction of long term corrosion behaviour in nuclear waste systems, September, Nice, France, 2004. 10 pages.
  • Shreir LL, Jarman RA, Burstein GT. Corrosion, Butterworth–Heinemann, Oxford, 1994.
  • Aciers pour béton armé soudables en barre a verrous, edition. 2014; 10:1–6.
  • Broomfield JP. Corrosion of steel in concrete: understanding, investigation and repair. London. UK: E&FN Spon. 1997: 5–45.
  • Costa D, Marcus P, Yang WP. Resistance to pitting and chemical composition of passive films of a Fe-17%Cr alloy in chloride-containing acid solution. J Electrochem Soc. 1994;141:2669–2676. doi: 10.1149/1.2059166
  • Montemor MF, Simoes AMP, Ferreira MGS. Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cement Concrete Comp. 2003;25:491–502. doi: 10.1016/S0958-9465(02)00089-6
  • Agarwal P, Orazem ME, Garcia-Rubio LH. Measurement models for electrochemical impedance spectroscopy I. Demonstration of applicability. J Electrochem Soc. 1992;139:1917–1927. doi: 10.1149/1.2069522
  • Frateur I, Deslouis C, Orazem ME, et al. Modeling of the cast iron/drinking water system by electrochemical impedance spectroscopy. Electrochim Acta. 1999;44:4345–4356. doi: 10.1016/S0013-4686(99)00150-4
  • Diaz B, Joiret S, Keddam M, et al. Passivity of iron in red mud’s water solutions. Electrochim Acta. 2004;49:30–39. doi: 10.1016/j.electacta.2004.01.063
  • Dou W, Liu J, Cai W, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros Sci. 2019;150:258–267. doi: 10.1016/j.corsci.2019.02.005
  • Serdar M, Zulj LV, Bjegović D. Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment. Corros Sci. 2013;69:149–157. doi: 10.1016/j.corsci.2012.11.035
  • Li Z, Wan H, Song D, et al. Corrosion behavior of x80 pipelinesteel in the presence of Brevibacterium halotolerans in Beijing soil. Bioelectrochemistry. 2018;121:18–26. doi: 10.1016/j.bioelechem.2018.01.011
  • Deo RN, Birbilis N, Cull JP. Measurement of corrosion in soil using the galvanostatic pulse technique. Corros Sci. 2014;80:339–349. doi: 10.1016/j.corsci.2013.11.058
  • Andrade C, Keddam M, Novoa X, et al. Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry. Electrochim Acta. 2001;46:3905–3912. doi: 10.1016/S0013-4686(01)00678-8
  • Morozov Y, Castela A, Dias A, et al. Chloride-induced corrosion behavior of reinforcing steel in spent fluid cracking catalyst modified mortars. Cem Concr Res. 2013;47:1–7. doi: 10.1016/j.cemconres.2013.01.011
  • Pan C, Guo M, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere. Corros Eng Sci Technol. 2019;54:241–248. doi: 10.1080/1478422X.2019.1574955
  • Gabrielli C, Takenouti H. Méthodes électrochimiques appliquées à la corrosion-technique stationnaire. Technique de L’ingénieur. 2010;33:1–17.
  • Akkouche R, Rémazeilles C, Jeannin M, et al. Influence of soil moisture on the corrosion processes of carbon steel in artificial soil: active area and differential aeration cells. Electrochim Acta. 2016;213:698–708. doi: 10.1016/j.electacta.2016.07.163
  • Stern M, Geary AL. A theoretical analysis of the shape of polarization curves. J Electrochem Soc. 1957;104:33–63. doi: 10.1149/1.2428653
  • Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: 3.3 Butler-Volmer Model of Electrode Kinetics, John Wiley & Sons; 2001. p. 92–98.
  • ASTM. Standard Practice for calculation of corrosion rates and related information from electrochemical measurements, G102–89, ASTM International. West Conshohocken, USA, 2004.
  • Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: evolution with time and determination of residual corrosion rates under cathodic protection. Corros Sci. 2012;55:246–253. doi: 10.1016/j.corsci.2011.10.031
  • El-Shamy AM, Shehata MF, Ismail AIM. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. Appl Clay Sci. 2015;114:461–466. doi: 10.1016/j.clay.2015.06.041
  • Andrade C, Alonso C, Gulikers J, et al. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater Struct. 2004;37:623–643. doi: 10.1007/BF02483292
  • Takasaki S, Yamada Y. Effects of temperature and aggressive anions on corrosion of carbon steel in portable water. Corros Sci. 2007;49:240–247. doi: 10.1016/j.corsci.2006.05.035
  • Liu TM, Wu YH, Luo SX, et al. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution. Materwiss Werksttech. 2010;41:228–233. doi: 10.1002/mawe.201000578
  • El Mendili Y, Abdelouas A, Ait Chaou A, et al. Carbon steel corrosion in clay-rich environment. Corros Sci. 2014;88:56–65. doi: 10.1016/j.corsci.2014.07.020
  • Moulder JF, Stickle WF, Sobol PE, et al. Handbook of X-ray photoelectron spectroscopy. Eden Prairie (MN): Perkin-Elmer Corp; 1992.
  • Biesinger MC, Lau LWM, Gerson AR, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086
  • Heuer JK, Stubbins JF. An XPS characterization of FeCO3 films from CO2 corrosion. Corros Sci. 1999;41:1231–1243. doi: 10.1016/S0010-938X(98)00180-2
  • Kozaki T, Imamura Y, Takada J, et al. Corrosion of iron and migration of corrosion products in compacted bentonite. Mat Res Soc Symp Proc. 1995;353:329–336. doi: 10.1557/PROC-353-329
  • Jin S, Atrens A. ESCA-Studies of the structure and composition of the passive film formed on stainless steels by various immersion times in 0,1M NaCl solution. Appl Phys A. 1987;42:149–165. doi: 10.1007/BF00616726
  • Smart NR, Reddy B, Rance AP, et al. The anaerobic corrosion of carbon steel in saturated compacted bentonite in the Swiss repository concept. Corros Eng Sci Technol. 2017;52:113–126. doi: 10.1080/1478422X.2017.1316088
  • Melchers RE, Petersen RB, Wells T. Empirical models for long-term localized corrosion of cast iron pipes buried in soils. Corros Eng Sci Technol. 2019;54:587–600. doi: 10.1080/1478422X.2019.1638564
  • Petersen RB, Melchers RE. Effect of moisture content and compaction on the corrosion of mild steel buried in clay soils. Corros Eng Sci Technol. 27 June 2019. doi:10.1080/1478422X.2019.1638564. accepted for publication.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.