Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 57, 2022 - Issue 3
148
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermogravimetric analysis-mass spectrometry study of steam oxidation resistance of HCM12A steel at 650°C and 700°C

, ORCID Icon &
Pages 223-231 | Received 09 Nov 2021, Accepted 11 Dec 2021, Published online: 30 Dec 2021

References

  • Viswanathan R, Sarver J, Tanzosh JM. Boiler materials for ultra-supercritical coal power plants—steam side oxidation. J Mater Eng Perform. 2006;15(3):255–274.
  • Hättestrand M, Andrén H. Microstructural development during ageing of an 11% chromium steel alloyed with copper. Mater Sci Eng A. 2001;318:94–101.
  • Wang Y, Mayer K-H, Scholz A, et al. Development of new 11%Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperatures up to 650 ◦C. Mater Sci Eng A. 2009;510-511:180–184.
  • Tan L, Yang Y, Allen TR. Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water. Corros Sci. 2006;48:3123–3138.
  • Zhang NQ, Zhu ZL, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water. Corros Sci. 2016;103:124–131.
  • Zhang J, Young DJ. Effect of copper on metal dusting of austenitic stainless steels. Corros Sci. 2007;49:1450–1467.
  • Xiao X, Liu G, Hu B, et al. Microstructure Stability of V and Ta microalloyed 12%Cr reduced activation ferrite/martensite steel during long-term aging at 650 °C. J Mater Sci Technol. 2015;31(3):311–319.
  • Asteman H, Segerdahl K, Svensson J-E, et al. The influence of water vapor on the corrosion of chromia-forming steels. Mater Sci Forum. 2001;369–372:277–286.
  • Asteman H, Svensson J-E, Johansson L-G. Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate. Oxid Met. 2002;57(3):193–216.
  • Bischoff J, Motta AT, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water. J Nucl Mater. 2013;41:604–611.
  • Terrani KA, Parish CM, Shin D, et al. Protection of zirconium by alumina-and chromia-forming iron alloys under high-temperature steam exposure. J Nucl Mater. 2013;438(1-3):64–71.
  • Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers. Int J Press Vessels Pip. 2006;83(11):778–783.
  • Segerdahl K, Svensson J-E, Johansson L-G. The high temperature oxidation of 11% chromium steel: part II – influence of flow rate. Mate Corros. 2002;53:479–485.
  • Huang X, Guzonas D, Li J. Characterisation of Fe–20Cr–6Al–Y model alloy in supercritical water. Corros Engine Sci Techn. 2015;50(2):137–148.
  • Ehlers J, Young DJ, Smaardijk EJ, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments. Corros Sci. 2006;48:3428–3454.
  • Terrani KA, Keiser JR, Brady MP, et al. High temperature oxidation of silicon carbide and advanced iron-based alloys in steam-hydrogen environments, TopFuel 2012, Manchester, UK, 2012.
  • Allen TR, Tan L, Gan J, et al. Microstructural development in advanced ferritic–martensitic steel HCM12A. J Nucl Mater. 2006;351(1–3):174–186.
  • Othman NK, Othman N, Zhang J, et al. Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres. Corros Sci. 2009;51:3039–3049.
  • Zurek J, Yang S-M, Lin D-Y, et al. Microstructural stability and oxidation behavior of sanicro 25 during long-term steam exposure in the temperature range 600–750 °C. Mater Corros. 2015;66(4):315–327.
  • Nakagawa K, Matsunaga Y, Yanagisawa T. Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment. Mater High Temp. 2003;20:67–73.
  • Yang Z, Walker MS, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions. Electrochem Solid-State Lett. 2003;6(10):B35–B37.
  • Bsat S, Huang X. Corrosion behaviour of IN625 in superheated steam at 800°C. Corr Engine Sci Tech. 2016;51(5):321–328.
  • Ampornrat P, Was GS. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water. J Nucl Mater. 2007;371(1–3):1–17.
  • Żurek J, Wessel E, Niewolak L, et al. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650 C. Corros Sci. 2004;46:2301–2317.
  • Li H, Cao Q, Zhu Z. Oxidation behaviour of super 304H stainless steel in supercritical water. Corr Engine Sci Tech. 2018;53(4):293–301.
  • Tan L, Machut MT, Sridharan K, et al. Corrosion behavior of a ferritic/martensitic steel HCM12A exposed to harsh environments. J Nucl Mater. 2007;371(1–3):161–170.
  • Kaibyshev RO, Skorobogatykh VN, Shchenkova IA. New steels of martensitic class for the heat power industry. high-temperature properties. Fiz Met Metalloved. 2010;109(2):200–215.
  • Essuman E, Meier GH, Żurek J, et al. The effect of water vapor on selective oxidation of Fe–Cr alloys. Oxid Met. 2008;69(3):143–162.
  • Ebbinghaus BB. Thermodynamics of gas phase chromium species: the chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes. Combust Flame. 1993;93:119–137.
  • Stolyarova VL. A mass spectrometric study of the thermodynamic properties of oxide melts. Glass Phys Chem. 2001;27:3–15.
  • Abdullah TK, Petitjean C, Panteix PJ, et al. Stability of protective oxide layer against corrosion: solubility measurement of chromia in soda lime silicate melts. Oxid Met. 2013;80:611–622.
  • Jonsson T, Karlsson S, Hooshyar H, et al. Oxidation after breakdown of the chromium-rich scale on stainless steels at high temperature: internal oxidation. Oxid Met. 2016;85:509–536.
  • Yang ZG, Xia G, Singh P, et al. Effects of water vapor on oxidation behavior of ferritic stainless steels under Solid Oxide Fuel Cell Interconnect exposure conditions”. Solid State Ionics. 2005;176:1495–1503.
  • Key C, Eziashi J, Froitzheim J, et al. Methods to quantify reactive chromium vaporization from Solid Oxide Fuel Cell interconnects. J Electrochem Soc. 2014;161(9):C373–C381.
  • Berthod P. Kinetics of high Temperature Oxidation and chromia volatilization for a binary Ni–Cr alloy. Oxid Met. 2005;64(3–4):235–252.
  • Pérez FJ, Castañeda SI. Study of oxyhydroxides formation on P91 ferritic steel and slurry coated by Al in contact with Ar + 80%H2O at 650 °C by TG-Mass spectrometry. Surf Coat Technol. 2007;201:6239–6246.
  • Castañeda SI, Marulanda JL, Pérez FJ. TGA-MS study of steam oxidation resistance of HCM12A steel at 750 and 800 °C. Mater Corr. 2017;68:1160–1171.
  • Pérez FJ, Castañeda SI. TG–mass spectrometry studies in coating design for supercritical steam turbines. Mater Corr. 2008;59(1):409–413.
  • Bradford S. Fundamentals of corrosion in gases. ASM Handbook. Vol. 13B, Corrosion. ASM International, USA, 2003.
  • Zhu Z, Xu H, Khan HI, et al. Oxidation behaviour of nimonic 263 in high-temperature supercritical water corr. Engine Sci Tech. 2018;53(8):617–624.
  • Thermo-Calc Software AB-Stockholm Technology Park-Björnnävägen 21-SE-11347 Stoekholm Sweden-Copyright © 1995-2003-Fundation of Computational Thermodynamics-TCCP_Useŕs Guide.pdf, 2003.
  • Lee T. A beginner’s guide to mass spectral interpretation; NIST’s Chemistry WebBook @ (Database). Available from http://webbook.nist.gov/chemistry, 1998.
  • Dollimore D, Gamlen GA, Taylor TJ. The mass spectrometric and thermogravimetric determination of rising temperature kinetic parameters for the solid-state decomposition of nickel nitrate hexahydrate. Thermochim Acta. 1981;51:269–276.
  • Jacobson N, Myers D, Opila E, et al. Interactions of water vapor with oxides at elevated temperatures. J Phys Chem Solid. 2005;66:471–478.
  • Liu F, Tang JE, Jonsson T, et al. Microstructural Investigation of protective and Non-protective oxides on 11% chromium steel. Oxid Met. 2006;66(5):295–319.
  • Troiani A, Rosi M, Garzoli S, et al. Effective redox reactions by chromium oxide anions: sulfur dioxide oxidation in the gas phase. Int J Mass Spectrom. 2019;436:18–22.
  • Castañeda SI, Bolívar FJ, Pérez FJ. Study of oxyhydroxides formation on P91 ferritic steel and CVD-FBR coated by Al in contact with Ar + 40% H2O at 650  °C by TG-Mass spectrometry. Oxid Met. 2010;74:61–78.
  • Pérez FJ, Castañeda SI. Study by means of the mass spectrometry of volatile species in the oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and Ferritic/martensitic steel samples at 923 K in Ar+ (10 to 80%) H2O vapor atmosphere for New-Materials design. Oxid Met. 2006;66(5/6):231–251.
  • Castañeda SI, Pérez FJ. Microstructure and volatile species determination of ferritic/martensitic FB2 steel in contact with Ar + 40%H2O at high temperatures. Oxid Met. 2013;79:147–166.
  • Asteman H, Svensson J-E, Johansson L-G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor. Oxid Met. 1999;52(1/2):95–111.
  • 89-0599 @ 2001 JCPDS-International Centre for Diffraction Data.
  • 89-0951 @ 2001 JCPDS-International Centre for Diffraction Data.
  • 87-0721 @ 2001 JCPDS-International Centre for Diffraction Data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.