Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 5
210
Views
0
CrossRef citations to date
0
Altmetric
Review

Plant wastes as alternative sources of sustainable and green corrosion inhibitors in different environments

ORCID Icon, , , &
Pages 521-533 | Received 19 May 2022, Accepted 13 Apr 2023, Published online: 03 May 2023

References

  • Nie Y, Gao J, Wang E, et al. An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells. Electrochim Acta. 2017;248:478–485. doi:10.1016/j.electacta.2017.07.108.
  • Abdallah M, Gad EAM, Sobhi M, et al. Performance of tramadol drug as a safe inhibitor for aluminum corrosion in 1.0 M HCl solution and understanding mechanism of inhibition using DFT. Egypt J Pet. 2019;28:173–181. doi:10.1016/j.ejpe.2019.02.003.
  • Nardeli JV, Fugivara CS, Taryba M, et al. Tannin: a natural corrosion inhibitor for aluminum alloys. Prog Org Coat. 2019;135:368–381. doi:10.1016/j.porgcoat.2019.05.035.
  • Husaini M. Effect of anisaldehyde as corrosion inhibitor for aluminium in sulphuric acid solution. J Sci Technol. 2020;12:1–10. doi:10.30880/jst.2020.12.02.001.
  • Bashir S, Lgaz H, Chung IM, et al. Effective green corrosion inhibition of aluminium using analgin in acidic medium: an experimental and theoretical study. Chem Eng Commun. 2021;208:1121–1130. doi:10.1080/00986445.2020.1752680.
  • Khattabi M, Benhiba F, Tabti S, et al. Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl. J Mol Struct. 2019;1196:231–244. doi:10.1016/J.MOLSTRUC.2019.06.070.
  • Benhiba F, Hsissou R, Abderrahim K, et al. Development of new pyrimidine derivative inhibitor for mild steel corrosion in acid medium. J Bio-Tribo-Corros. 2022;8. doi:10.1007/s40735-022-00637-5.
  • Mustafa AM, Sayyid FF, Betti N, et al. Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-triazole. South African J Chem Eng. 2022;39:42–51. doi:10.1016/j.sajce.2021.11.009.
  • Berisha A, Podvorica FI, Vataj R. Corrosion inhibition study of mild steel in an aqueous hydrochloric acid solution using brilliant cresyl blue – a combined experimental and Monte Carlo study. Port Electrochim Acta. 2021;39:393–401. doi:10.4152/pea.2021390601.
  • Nwosu FO, Amusat SO. Corrosion inhibition of mild steel using parinari polyandra leave extracts in diluted hydrochloric acids. Port Electrochim Acta. 2021;39:431–449. doi:10.4152/pea.2021390605.
  • Wan S, Chen H, Zhang T, et al. Anti-Corrosion mechanism of parsley extract and synergistic iodide as novel corrosion inhibitors for carbon steel-Q235 in acidic medium by electrochemical, XPS and DFT methods. Front Bioeng Biotechnol. 2021;9:1–15. doi:10.3389/fbioe.2021.815953.
  • Zhu M, Guo L, He Z, et al. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: a detailed multidimensional study. J Colloid Interface Sci. 2022;608:2039–2049. doi:10.1016/J.JCIS.2021.10.160.
  • Popoov BN. Solutions guide - chapter 6: galvanic corrosion; 2015.
  • Ismail AIM, El-Shamy AM. Engineering behaviour of soil materials on the corrosion of mild steel. Appl Clay Sci. 2009;42:356–362. doi:10.1016/j.clay.2008.03.003.
  • Eddy NO, Awe F, Ebenso EE. Adsorption and inhibitive properties of ethanol extracts of leaves of Solanum melongena for the corrosion of mild steel in 0.1M HCl. Int J Electrochem Sci. 2010;5:1996–2011.
  • Migahed MA. Environmental factors affecting corrosion inhibition in oil and gas industry. Corros Inhib Oil Gas Ind. 2020: 77–109. doi:10.1002/9783527822140.ch3.
  • Bigdeli S, Kjellqvist L, Naraghi R, et al. Strategies for high-temperature corrosion simulations of Fe-based alloys using the calphad approach: part I. J Phase Equilibria Diffus. 2021;42:403–418. doi:10.1007/s11669-021-00893-x.
  • Verma C, Ebenso EE, Quraishi MA, et al. Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications. Mater Adv. 2021;2:3806–3850. doi:10.1039/d0ma00681e.
  • El-Haddad MAM, Bahgat Radwan A, Sliem MH, et al. Highly efficient eco-friendly corrosion inhibitor for mild steel in 5 M HCl at elevated temperatures: experimental & molecular dynamics study. Sci Rep. 2019;9:1–15. doi:10.1038/s41598-019-40149-w.
  • Khadom AA. Effect of temperature on corrosion inhibition of copper - nickel alloy by tetraethylenepentamine under flow conditions. J Chil Chem Soc. 2014;59:2545–2549. doi:10.4067/S0717-97072014000300004.
  • Rastegari A, Rastegari F. Factors affecting corrosion inhibitors; 2021.
  • Vasilike A, Stamatis CB, Iannoulaki M, et al. Organic green corrosion inhibitors derived from natural and/or biological sources for conservation of metals cultural heritage; 2021.
  • Kushwah R, Pathak RK. Open circuit potential, polarization and thermometric study of guar gum as corrosion inhibitor on mild steel by in acidic media. Asian J Chem Sci. 2020;8(2):55–60. doi:10.9734/ajocs/2020/v8i219040.
  • Chile NE, Haldhar R, Chijoke OC, et al. Theoretical study and adsorption behavior of urea on mild steel in automotive gas oil (AGO) medium. Lubricants. 2022;2022(10):157. doi:10.3390/lubricants10070157.
  • Khan G, Basirun WJ, Ahmed P, et al. Electrochemical investigation on the corrosion inhibition of mild steel by quinazoline Schiff base compounds in hydrochloric acid solution. J Colloid Interface Sci. 2017;502:134–145. doi:10.1016/j.jcis.2017.04.061.
  • Trinet Y, Srisuwan T, Rodchanarowan A. The electrochemical investigation of the corrosion rates of welded pipe ASTM A106 grade B. Metals. 2016;6(9):207. doi:10.3390/met6090207.
  • Sumithra K, Kavita Y, Manivannan R, et al. Electrochemical investigation of the corrosion inhibition mechanism of Tectona grandis leaf extract for SS304 stainless steel in hydrochloric acid. Corros Rev. 2017;35(2):111–121. doi:10.1515/corrrev-2016-0074.
  • Szklarska-Smialowska Z, Mańkowski J. Cathodic inhibition of the corrosion of mild steel in phosphate, tungstate, arsenate and silicate solutions containing Ca2+ions. Br Corros J. 1969;4:271–275. doi:10.1179/bcj.1969.4.5.271.
  • Rani BEA, Basu BBJ. Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros. 2012;2012. doi:10.1155/2012/380217.
  • Gao X, Liu S, Lu H, et al. Corrosion inhibition of iron in acidic solutions by monoalkyl phosphate esters with different chain lengths. Ind Eng Chem Res. 2015;54:1941–1952. doi:10.1021/ie503508h.
  • Zhang J, Lu X, Zhang J, et al. Corrosion-inhibition effect of different phosphate compounds for carbon steel in chloride-contaminated mortars. Int J Electrochem Sci. 2019;14:8601–8610. doi:10.20964/2019.09.29.
  • Arthur DE, Jonathan A, Ameh PO, et al. A review on the assessment of polymeric materials used as corrosion inhibitor of metals and alloys. Int J Ind Chem. 2013;4:2. doi:10.1186/2228-5547-4-2.
  • Mandal S, Singh JK, Lee DE, et al. Effect of phosphate-based inhibitor on corrosion kinetics and mechanism for formation of passive film onto the steel rebar in chloride-containing pore solution. Materials. 2020;13:7–9. doi:10.3390/MA13163642.
  • Mandal S, Singh JK, Lee DE, et al. Ammonium phosphate as inhibitor to mitigate the corrosion of steel rebar in chloride contaminated concrete pore solution. Molecules. 2020;25. doi:10.3390/molecules25173785.
  • Farag AA, Hegazy MA. Synergistic inhibition effect of potassium iodide and novel Schiff bases on X65 steel corrosion in 0.5M H2SO4. Corros Sci. 2013;74:168–177. doi:10.1016/j.corsci.2013.04.039.
  • Zulfareen N, Kannan K, Venugopal T, et al. Synthesis, characterization and corrosion inhibition efficiency of N-(4-(morpholinomethyl carbamoyl phenyl) furan-2-carboxamide for brass in HCl medium. Arab J Chem. 2016;9:121–135. doi:10.1016/j.arabjc.2015.08.023.
  • Mishra A, Aslam J, Verma C, et al. Imidazoles as highly effective heterocyclic corrosion inhibitors for metals and alloys in aqueous electrolytes: a review. J Taiwan Inst Chem Eng. 2020;114:341–358. doi:10.1016/j.jtice.2020.08.034.
  • Singh WP, Bockris JO. Toxicity issues of organic corrosion inhibitors: applications of QSAR model; 1996.
  • Gece G. Drugs: a review of promising novel corrosion inhibitors. Corros Sci. 2011;53:3873–3898. doi:10.1016/j.corsci.2011.08.006.
  • Tanwer S, Shukla SK. Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: a review. Curr Res Green Sustain Chem. 2022;5. doi:10.1016/j.crgsc.2021.100227.
  • Peter A, Obot IB, Sharma SK. Use of natural gums as green corrosion inhibitors: an overview. Int J Ind Chem. 2015;6:153–164. doi:10.1007/s40090-015-0040-1.
  • Iroha NB, Akaranta O. Experimental and surface morphological study of corrosion inhibition of N80 carbon steel in HCl stimulated acidizing solution using gum exudate from Terminalia Mentaly. SN Appl Sci. 2020;2. doi:10.1007/s42452-020-03296-8.
  • Al Kiey SA, Hasanin MS, Dacrory S. Potential anticorrosive performance of green and sustainable inhibitor based on cellulose derivatives for carbon steel. J Mol Liq. 2021;338:116604. doi:10.1016/j.molliq.2021.116604.
  • Gao C, Zhao X, Fatehi P, et al. Lignin copolymers as corrosion inhibitor for carbon steel. Ind Crops Prod. 2021;168:113585. doi:10.1016/j.indcrop.2021.113585.
  • Pourzarghan V, Fazeli-Nasab B. The use of Robinia pseudoacacia L fruit extract as a green corrosion inhibitor in the protection of copper-based objects. Herit Sci. 2021;9:1–14. doi:10.1186/s40494-021-00545-w.
  • Alrefaee SH, Rhee KY, Verma C, et al. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: recent advancements. J Mol Liq. 2021;321:114666. doi:10.1016/j.molliq.2020.114666.
  • Renzaho AMN, Kamara JK, Toole M. Biofuel production and its impact on food security in low and middle income countries: implications for the post-2015 sustainable development goals. Renew Sustain Energy Rev. 2017;78:503–516. doi:10.1016/j.rser.2017.04.072.
  • Brinkman M, Levin-Koopman J, Wicke B, et al. The distribution of food security impacts of biofuels, a Ghana case study. Biomass Bioenergy. 2020;141. doi:10.1016/j.biombioe.2020.105695.
  • Mittal D, Kaur G, Singh P, et al. Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol. 2020;2. doi:10.3389/fnano.2020.579954.
  • Yang HM. Role of organic and eco-friendly inhibitors on the corrosion mitigation of steel in acidic environments—a state-of-art review. Molecules. 2021;26:3473. doi:10.3390/molecules26113473.
  • Xhanari K, Finšgar M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: a review. Arab J Chem. 2019;12:4646–4663. doi:10.1016/j.arabjc.2016.08.009.
  • Behrooz N, Ghaffarinejad A, Salahandish R. Effect of orange peel extract on the corrosion of mild steel in 1 M HCl solution. 6th Conference on thermal power plants (CTPP); 2016, Vol. 30, p. 64–68. doi:10.1109/CTPP.2016.7483055
  • Hong SY, Kiew Pl. The inhibitive and adsorptive characteristics of orange peel extract on metal in acidic media. Prog Energy Environ. 2019;11:1–14.
  • Ukpe RA. Joint effect of ethanol extract of orange peel and halides on the inhibition of the corrosion of aluminum in 0.1 M HCl: an approach to resource recovery. Commun Phys Sci. 2019;4:118–132.
  • Zhang C, Zhao J. Inhibition effects of orange peel extract on the corrosion of Q235 steel in CO2-saturated and CO2/H2S coexistent brine solutions. Res Chem Intermed. 2018;44:1275–1293. doi:10.1007/s11164-017-3166-2.
  • Ukpe RA, Odoemelam SA, Odiongenyi AO, Eddy NO. Inhibition of the corrosion of aluminium in 0.1 M HCl by ethanol extract of mango peel waste (EMPW). J Bioprocess Chem Eng. 2014;2:1–9.
  • Pradityana A, Subiyanto H, Winarto, et al. Analysis of surface characteristic in mango peels as inhibitor in acid solution. AIP Conf Proc. 2018;1983, doi:10.1063/1.5046298.
  • Coelho EM, De Souza MEAO, Corrêa LC, et al. Bioactive compounds and antioxidant activity of mango peel liqueurs (Mangifera indica L.) produced by different methods of maceration. Antioxidants. 2019;8:1–11. doi:10.3390/antiox8040102.
  • Segovia-Sandoval SJ, Ocampo-Pérez R, Berber-Mendoza MS, et al. Walnut shell treated with citric acid and its application as biosorbent in the removal of Zn(II). J Water Process Eng. 2018;25:45–53. doi:10.1016/j.jwpe.2018.06.007.
  • Pradityana A, Subowo, Anzip A, et al. Inhibition mechanism on mango peels as organic inhibitor in 1 M HCl solution. AIP Conf Proc. 2018;1983. doi:10.1063/1.5046291.
  • Da Rocha JC, Da Cunha Ponciano Gomes JA, D’Elia E. Aqueous extracts of mango and orange peel as green inhibitors for carbon steel in hydrochloric acid solution. Mater Res. 2014;17:1581–1587. doi:10.1590/1516-1439.285014.
  • da Rocha JC, da Cunha Ponciano Gomes JA, D’Elia E. Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts. Corros Sci. 2010;52:2341–2348. doi:10.1016/j.corsci.2010.03.033.
  • Saeed MT, Saleem M, Usmani S, et al. Corrosion inhibition of mild steel in 1 M HCl by sweet melon peel extract. J King Saud Univ Sci. 2019;31:1344–1351. doi:10.1016/j.jksus.2019.01.013.
  • Eddy NO, Odoemelam SA, Odiongenyi AO. Ethanol extract of Musa acuminate peel as an eco-friendly inhibitor for the corrosion of mild steel in H2SO4. Adv Nat Appl Sci. 2008;2(1):35–42.
  • Saleh RM, Ismail AA, Ei Hosary AA. Corrosion inhibition by naturally occurring substances VII. The effect of aqueous extracts of some leaves and fruit-peels on the corrosion of steel, Al, Zn and cu in acids. Br Corros J. 1982;17:131–135. doi:10.1179/000705982798274345.
  • Abboud Y, Chagraoui A, Tanane O, et al. Punica granatum leave extract as green corrosion inhibitor for mild steel in hydrochloric acid. MATEC Web conference; 2013, Vol. 5, p. 2–4. doi:10.1051/matecconf/20130504029.
  • Nahusona DR, Koriston P. The effectiveness of watermelon rind extract as corrosion inhibitor in stainless steel orthodontic wire. Int J Appl Pharm. 2019;11:22–25. doi:10.22159/ijap.2019.v11s4.35283.
  • Odewunmi NA, Umoren SA, Gasem ZM. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution. J Environ Chem Eng. 2015;3:286–296. doi:10.1016/j.jece.2014.10.014.
  • Odewunmi NA, Umoren SA, Gasem ZM, et al. L-Citrulline: an active corrosion inhibitor component of watermelon rind extract for mild steel in HCl medium. J Taiwan Inst Chem Eng. 2015;51:177–185. doi:10.1016/j.jtice.2015.01.012.
  • Ayoola AA, Auta-Joshua N, Durodola BM, et al. Combating A36 mild steel corrosion in 1 M H2SO4 medium using watermelon seed oil inhibitor. AIMS Mater Sci. 2021;8:130–143. doi:10.3934/MATERSCI.2021009.
  • Nyong B. Melon (Cucumismelo) and groundnut (Arachishypogaea) peel extracts as corrosion inhibitors for mild steel in hydrochloric acid solution. ChemSearch J (Chemical Soc Niger). 2016;7(2):7–12. http://doi.org/10.4314/csj.v7i2.2
  • Vitus AJ, Otaraku IJ. Study of corrosion inhibition of pineapple peels extracts on mild steel in 1M HCl. J Sci Eng Res. 2018;5:311–317.
  • Lin B, Shao J, Xu Y, et al. Adsorption and corrosion of renewable inhibitor of Pomelo peel extract for mild steel in phosphoric acid solution. Arab J Chem. 2021;14(5). doi:10.1016/j.arabjc.2021.103114.
  • Ong CC, Karim KA. Inhibitory effect of red onion skin extract on the corrosion of mild steel in acidic medium. Chem Eng Trans. 2017;56:913–918. doi:10.3303/CET1756153.
  • Ferreira KCR, Cordeiro RFB, Nunes JC, et al. Corrosion inhibition of carbon steel in HCl solution by aqueous brown onion peel extract. Int J Electrochem Sci. 2016;11:406–418.
  • James a, Akaranta O, Chemistry I, et al. Corrosion inhibition of aluminum in 2.0 M hydrochloric acid solution by the acetone extract of red onion skin. Pure Appl Chem. 2009;3:262–268.
  • Marhamati F, Mahdavian M, Bazgir S. Corrosion mitigation of mild steel in hydrochloric acid solution using grape seed extract. Sci Rep. 2021;11:1–16. doi:10.1038/s41598-021-97944-7.
  • Okewale AO, Adebayo T. Investigation of pumpkin pod extract as corrosion inhibitor for carbon steel in HCl solution. Niger J Technol. 2020;39:173–181. doi:10.4314/njt.v39i1.19.
  • Anaee R. Corrosion inhibition by pumpkin peels extract in petroleum environment. Am Chem Sci J. 2015;5:32–40. doi:10.9734/acsj/2015/12594.
  • Daniel-Enrique P-P, Villalobos-Vasquez M-A, Meza-Castellar P-J, et al. Evaluation of Theobroma Cacao pod husk extracts as corrosion inhibitor for carbon steel. Ciencia Technol Futur. 2016;6:147–156.
  • Ukpe RA. Joint effect of halides and ethanol extract of sorghum on the inhibition of the corrosion of aluminum in HCl. Commun Phys Sci. 2019;4:141–150.
  • Wang S, Wu B, Qiu L, et al. Inhibition effect of tangerine peel extract on J55 steel in CO2-saturated 3.5 wt. % NaCl solution. Int J Electrochem Sci. 2017;12:11195–11211. doi:10.20964/2017.12.02.
  • Chaubey N, Singh VK, Quraishi MA. Effect of some peel extracts on the corrosion behavior of aluminum alloy in alkaline medium. Int J Ind Chem. 2015;6:317–328. doi:10.1007/s40090-015-0054-8.
  • Li D, Zhao X, Liu Z, et al. Synergetic anticorrosion mechanism of main constituents in Chinese Yam peel for copper in artificial seawater. ACS Omega. 2021;6:29965–29981. doi:10.1021/acsomega.1c04500.
  • Ngobiri NC, Kikanme KN. Inhibition of mild steel corrosion in 0.25 M H2SO4 using tetracarpidium conophorum shell extract. J Eng Res Reports. 2020;11:19–24. doi:10.9734/jerr/2020/v11i417066.
  • Meng S, Liu Z, Zhao X, et al. Efficient corrosion inhibition by sugarcane purple rind extract for carbon steel in HCl solution: mechanism analyses by experimental and in silico insights. RSC Adv. 2021;11:31693–31711. doi:10.1039/d1ra04976c.
  • Odewunmi NA, Umoren SA, Gasem ZM. Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media. J Ind Eng Chem. 2015;21:239–247. doi:10.1016/j.jiec.2014.02.030.
  • Rodríguez JF, Rodríguez E, Suárez LF, et al. Efficiency of a green inhibitor extracted from the watermelon peel in the corrosion of structural steel A36 evaluated in acid and saline media. Rev. ION. 2020;33(1):33–38. doi:10.18273/revion.v33n1-2020003.
  • Szpunar JA, Ashassi-Sorkhabi H, Mirzaee S, et al. Pomegranate (Punica granatum) peel extract as a green corrosion inhibitor for mild steel in hydrochloric acid solution. Int J Corros. 2015;2015:197587. doi:10.1155/2015/197587.
  • Amodu OS, Odunlami MO, Akintola JT, et al. Exploring musa paradisiaca peel extract as a green corrosion inhibitor for mild steel using factorial design method. In: Ambrish Singh, editor. Corrosion inhibitors. London, UK: IntechOpen; 2019. doi:10.5772/intechopen.76742
  • Ji G, Anjum S, Sundaram S, et al. Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution. Corros Sci. 2015;90:107–117. doi:10.1016/j.corsci.2014.10.002.
  • Eddy NO, Ebenso EE. Adsorption and inhibitive properties of ethanol extract of Musa sapientum peels as a green corrosion inhibitor for mild steel in H2SO4. African J Pure Appl Chem. 2008;2(6):1–9.
  • Rosli NR, Yusuf SM, Sauki A, et al. Musa Sapientum (banana) peels as green corrosion inhibitor for mild steel. Key Eng Mater. 2019;797:230–239. doi:10.4028/www.scientific.net/kem.797.230.
  • Gunavathy N, Murugavel SC. Corrosion inhibition studies of mild steel in acid medium using Musa Acuminate extract. J Chem. 2012;9:952402. doi:10.1155/2012/952402.
  • Yetri Y, Emriadi G, Jamarun N. Theobroma cacao peel extract as the eco-friendly corrosion inhibitor for mild steel. In: Aliofkhazraei M, editor. Corrosion inhibitors, principles and recent applications. London, UK: IntechOpen; 2018. doi:10.5772/intechopen.70101.
  • Silva AM, Dahyunir D, Yuli Y. The use of cacao peels extract (theobrema cacao) as the corrosion inhibitor on steel layers electrodeposition. Recent Adv Petrochem Sci. 2018;5(3):555661. doi:10.19080/RAPSCI.2018.05.555661.
  • Ismail M, Absulrahman AS, Hussaon MS. Solid waste as environmental benign corrosion inhibitors in acid medium. Int J Eng Sci Technol. 2011;3(2):1742–1748.
  • Elsharif AM, Abubshait SA, Abdulazeez I, et al. Synthesis of a new class of corrosion inhibitors derived from natural fatty acid: 13-docosenoic acid amide derivatives for oil and gas industry. Arab J Chem. 2020;13:5363–5376. doi:10.1016/j.arabjc.2020.03.015.
  • Khanra A, Srivastava M, Rai MP, et al. Application of unsaturated fatty acid molecules derived from microalgae toward mild steel corrosion inhibition in HCl solution: a novel approach for metal-inhibitor association. ACS Omega. 2018;3:12369–12382. doi:10.1021/acsomega.8b01089.
  • Hermoso-Diaz IA, Foroozan AE, Flores-De los Rios JP, et al. Electrochemical and quantum chemical assessment of linoleic acid as a corrosion inhibitor for carbon steel in sulfuric acid solution. J Mol Struct. 2019;1197:535–546. doi:10.1016/j.molstruc.2019.07.085.
  • Rajasekar A, Maruthamuthu S, Palaniswamy N, et al. Biodegradation of corrosion inhibitors and their influence on petroleum product pipeline. Microbiol Res. 2007;162:355–368. doi:10.1016/j.micres.2006.02.002.
  • Mobin M, Zehra S, Aslam R. L-Phenylalanine methyl ester hydrochloride as a green corrosion inhibitor for mild steel in hydrochloric acid solution and the effect of surfactant additive. RSC Adv. 2016;6:5890–5902. doi:10.1039/c5ra24630j.
  • Beytur M, Turhan Irak Z, Manap S, et al. Synthesis, characterization and theoretical determination of corrosion inhibitor activities of some new 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. Heliyon. 2019;5:e01809. doi:10.1016/j.heliyon.2019.e01809.
  • Ebenso EE, Verma C, Olasunkanmi LO, et al. Molecular modelling of compounds used for corrosion inhibition studies: a review. Phys Chem Chem Phys. 2021;23:19987–20027. doi:10.1039/D1CP00244A.
  • Eddy NO, Ameh PO. Computational and experimental study on Tapinanthus bangwensis leaves as corrosion inhibitor for mild steel and Al in 0.1 M HCl. Curr Top Electrochem. 2021;23:45–62.
  • Eddy NO, Ita BI. QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl. J Mol Model. 2011;17:359–376. doi:10.1007/s00894-010-0731-7.
  • Eddy NO, Essien NB. Computational chemistry study of toxicity of some m-tolyl acetate derivatives insecticides and molecular design of structurally related products. Silico Pharmacol. 2017;5:1–17. doi:10.1007/s40203-017-0036-y.
  • Eddy NO. Theoretical chemistry study on the toxicity of some polychlorobiphenyl (PCB) compounds using molecular descriptors. Sci African. 2020;10:e00587. doi:10.1016/j.sciaf.2020.e00587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.