Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 34, 2020 - Issue 18
809
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Antimicrobial secondary metabolites of an endolichenic Aspergillus niger isolated from lichen thallus of Parmotrema ravum

, , , , , & show all
Pages 2573-2580 | Received 03 Oct 2018, Accepted 02 Nov 2018, Published online: 02 Jan 2019

References

  • Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F. 2009. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol. 58(3):283–297.
  • Astuti P, Erden W, Wahyono W, Wahyuono S, Hertiani T. 2016. Pyrophen produced by endophytic fungi Aspergillus sp., isolated from Piper crocatum Ruiz and Pav exhibits cytotoxic activity and induces s phase arrest in T47D breast cancer cells. Asian Pac. J. Cancer Prev. 17(2):615–618.
  • Barnett HL, Hunter BB. 2004. Illustrated genera of imperfect fungi. St. Paul: APS Press.
  • Berger S, Braun S. 2004. 200 and more basic NMR experiments: a practical course. Weinheim: Wiley-VCH.
  • Breitmaier E, Voelter W. 1987. Carbon-13 NMR Spectroscopy. Weinheim: VCH, pp. 183–280.
  • Cimmino A, Nimis P, Masi M, De Gara L, Van Otterlo W, Kiss R, Evidente A, Lefranc F. 2018. Have lichenized fungi delivered promising anticancer small molecules? Phytochem Rev. doi:10.1007/s11101-018-9577-x.
  • Crimmins MT, Washburn DG, Zawachi FJ. 2000. The synthesis of 2-alkyl-4-pyrones from Meldrum’s acid. Org Synth. 77:114–120.
  • Ding G, Li Y, Fu S, Liu S, Wei J, Che Y. 2009. Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod. 72(1):182–186.
  • Fang W, Lin X, Wang J, Liu Y, Tao H, Zhou X. 2016. Asperpyrone-type bis-naphtho-γ-pyrones with COX-2–inhibitory activities from marine-derived fungus Aspergillus niger. Molecules. 21(7):941–948.
  • Ghosal S, Biswas K, Chakrabarti DK. 1979. Toxic naphtho-gamma-pyrones from Aspergillus niger. J Agric Food Chem. 27(6):1347–1351.
  • Gilman JC. 1971. A manual of soil fungi. Lowa: Iowa State College Press.
  • He Y, Tian J, Chen X, Sun W, Zhu H, Li Q, Lei L, Yao G, Xue Y, Wang J, et al. 2016. Fungal naphtho-γ-pyrones: potent antibiotics for drug-resistant microbial pathogens. Sci Rep. 6:24291.
  • Henrikson JC, Ellis TK, King JB, Cichewicz RH. 2011. Reappraising the structures and distribution of metabolites from black Aspergilli containing uncommon 2-benzyl-4H-pyran-4-one and 2-benzylpyridin-4(1H)-one systems. J Nat Prod. 74(9):1959–1964.
  • Kellogg JJ, Raja HF. 2017. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev. 16(2):271–293.
  • Koreeda M, Akagi HA. 1980. Convenient synthesis of substituted γ-pyrones. Tetrahed Lett. 21(13):1197–1200.
  • Li WC, Zhou J, Guo SY, Guo LD. 2007. Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers. 25:69–80.
  • Nakanishi K, Solomon PH. 1977. Infrared absorption spectroscopy. 2nd ed. Oakland, CA: Holden Day.
  • Padhi S, Masi M, Cimmino A, Tuzi A, Jena S, Tayung K, Evidente A. 2019. Funiculosone, a substituted dihydroxanthene-1,9-dione with two of its analogues produced by an endolichenic fungus Talaromyces funiculosus and their antimicrobial activity. Phytochemistry. 157:175–183.
  • Padhi S, Das D, Panja S, Tayung K. 2017. Molecular characterization and antimicrobial activity of an endolichenic fungus, Aspergillus sp. isolated from Parmelia caperata of Similipal Biosphere Reserve, India. Interdiscip Sci. 9(2):237–246.
  • Padhi S, Tayung K. 2015. In vitro antimicrobial potentials of endolichenic fungi isolated from thalli of Parmelia lichen against some human pathogens. BS Univ Bas Appl Sci. 4:299–306.
  • Paranagama PA, Wijeratne EMK, Burns AM, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL. 2007. Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod. 70:700–1705.
  • Petrini O, Hake U, Dreyfuss MM. 1990. An analysis of fungal communities isolated from fruticose lichens. Mycologia. 82(4):444–451.
  • Pretsch E, Bühlmann P, Affolter C. 2000. Structure determination of organic compounds tables of spectral data. Berlin: Springer-Verlag.
  • Shaaban M, Shaaban KA, Abdel-Aziz MS. 2012. Seven naphtho-γ-pyrones from the marine-derived fungus Alternaria alternata: structure elucidation and biological properties. Org Med Chem Lett. 2(1):6–68.
  • Suryanarayan TS, Thirunavukkarasu N, Hariharan GN, Balaji P. 2005. Occurrence of non-obligate microfungi inside lichen thalli. Sydowia. 57:120–130.
  • Suryanarayanan TS, Thirunavukkarasu N. 2017. Endolichenic fungi: the lesser known fungal associates of lichens. Mycology. 8(3):189–196.
  • Tripathi M, Gupta RC, Joshi Y. 2014. Spegazzinia tessarthra isolated as a true endophyte from lichen Heterodermia flabellata. Indian Phytopathol. 67:109–110.
  • Tripathi M, Joshi Y. 2015. Endolichenic fungi in Kumaun Himalaya: A case study. In: Upreti DK, Divakar PK, Shukla V, Bajpai R. editor.Recent Advances in Lichenology, Berlin, Germany: Springer; pp. 111–120.
  • Wang QX, Bao L, Yang XL, Liu DL, Guo H, Dai HQ, Song FH, Zhang LX, Guo LD, Li SJ, et al. 2013. Ophiobolins P-T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp. Fitoterapia. 90:220–227.
  • Wang Y, Zheng Z, Liu S, Zhang H, Li E, Guo L, Che Y. 2010. Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. J Nat Prod. 73(5):920–924.
  • Wu YH, Chen GD, Wang CX, Hu D, Li XX, Lian YY, Lin F, Guo LD, Gao H. 2015. Pericoterpenoid A, a new bioactive cadinane-type sesquiterpene from Periconia sp. J Asian Nat Prod Res. 17(6):671–675.
  • Zawacki FJ, Crimmins MT. 1996. A convenient synthesis of unsymmetrical, substituited γ-pyrones from Meldrum’s acid. Tetrahed Lett. 37(36):6499–6502.
  • Zhang Y, Li XM, Feng Y, Wang BG. 2010. Phenethyl-alpha-pyrone derivatives and cyclodipeptides from a marine algous endophytic fungus Aspergillus niger EN-13. Nat Prod Res. 24(11):1036–1043.
  • Zhang Y, Zhu T, Fang Y, Liu H, Gu Q, Zhu W. 2007. Carbonarones A and B, new bioactive γ-pyrone and α-pyridone derivatives from the marine-derived fungus Aspergillus carbonarius. J Antibiot. 60(2):153–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.