Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 36, 2022 - Issue 20
1,638
Views
13
CrossRef citations to date
0
Altmetric
Short Communication

Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptor-binding domain (RBD)

, , , , , , & show all
Pages 5358-5363 | Received 17 Mar 2021, Accepted 01 May 2021, Published online: 12 May 2021

References

  • Al Adem K, Shanti A, Stefanini C, Lee S. 2020. Inhibition of SARS-CoV-2 entry into host cells using small molecules. Pharmaceuticals (Basel). 13(12):447.
  • Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV. 2020. Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: an in silico. Anal Front Microbiol. 11(1796). PMID: 32793181 PMCID: PMC7390959 DOI: 10.3389/fmicb.2020.01796
  • Aweeka FT, German PI. 2008. Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet. 47(2):91–102.
  • Badraoui R, Adnan M, Bardakci F, Alreshidi MM. 2021. Chloroquine and hydroxychloroquine interact differently with ACE2 domains reported to bind with the coronavirus spike protein: mediation by ACE2 polymorphism. Molecules. 26(3):673.
  • Basu A, Sarkar A, Maulik U. 2020. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep. 10(1):17699.
  • Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, et al. 2020. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 251(3):228–248.
  • Brown GD. 2010. The biosynthesis of Artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules. 15(11):7603–7698.
  • Cao R, Hu H, Li Y, Wang X, Xu M, Liu J, Zhang H, Yan Y, Zhao L, Li W, et al. 2020. Anti-SARS-CoV-2 Potential of Artemisinins in vitro. ACS Infect Dis. 6(9):2524–2531.
  • Chen RH, Yang LJ, Hamdoun S, Chung SK, Lam CW, Zhang KX, Guo X, Xia C, Law BYK, Wong VKW. 2021. 1,2,3,4,6-Pentagalloyl glucose, a RBD-ACE2 binding inhibitor to prevent SARS-CoV-2 infection. Front Pharmacol. 12:634176.
  • Coghi P, Yaremenko IA, Prommana P, Radulov PS, Syroeshkin MA, Wu YJ, Gao JY, Gordillo FM, Mok S, Wong VKW, et al. 2018. Novel peroxides as promising anticancer agents with unexpected depressed antimalarial Activity. ChemMedChem. 13(9):902–908.
  • Doerr S, Harvey MJ, Noé F, De Fabritiis G. 2016. HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput. 12(4):1845–1852.
  • Fantini J, Di Scala C, Chahinian H, Yahi N. 2020. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 55(5):105960.
  • Gendrot M, Andreani J, Boxberger M, Jardot P, Fonta I, Le Bideau M, Duflot I, Mosnier J, Rolland C, Bogreau H, et al. 2020. Antimalarial drugs inhibit the replication of SARS-CoV-2: An in vitro evaluation. Travel Med Infect Dis. 37:101873.
  • Gianoncelli A, Ongaro A, Zagotto G, Memo M, Ribaudo G. 2020. 2020. 2-(3,4-Dihydroxyphenyl)-4-(2-(4-nitrophenyl)hydrazono)-4H-chromene-3,5,7-triol. Molbank. 2020(3):M1144.
  • Ho WE, Peh HY, Chan TK, Wong WSF. 2014. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 142(1):126–139.
  • Kavak E, Mutlu D, Ozok O, Arslan S, Kivrak A. 2021. Design, synthesis and pharmacological evaluation of novel Artemisinin-thymol. Nat Prod Res. PMID: 33416016. doi:10.1080/14786419.2020.1865954.
  • Krishna S, Augustin Y, Wang J, Xu C, Staines HM, Platteeuw H, Kamarulzaman A, Sall A, Kremsner P. 2021. Repurposing antimalarials to tackle the COVID-19 pandemic. Trends Parasitol. 37(1):8–11.
  • Kshirsagar SG, Rao RV. 2021. Antiviral and immunomodulation effects of Artemisia. Medicina (Kaunas. ). 57(3):217.
  • Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F. 2018. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 14(8):1435–1455.
  • Nahar L, Guo M, Sarker SD. 2020. A review on the latest advances in extraction and analysis of artemisinin. Phytochem Anal. 31(1):5–14.
  • Prashantha CN, Gouthami K, Lavanya L, Bhavanam S, Jakhar A, Shakthiraju RG, Suraj V, Sahana KV, Sujana HS, Guruprasad NM, et al. 2021. Molecular screening of antimalarial, antiviral, anti-inflammatory and HIV protease inhibitors against spike glycoprotein of coronavirus. J Mol Graph Model. 102:107769.
  • Rathod SB, Prajapati PB, Punjabi LB, Prajapati KN, Chauhan N, Mansuri MF. 2020. Peptide modelling and screening against human ACE2 and spike glycoprotein RBD of SARS-CoV-2. In Silico Pharmacol. 8(1):3.
  • Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 17(6):613–620.
  • Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2:69.
  • Wang N, Han S, Liu R, Meng L, He H, Zhang Y, Wang C, Lv Y, Wang J, Li X, et al. 2020. Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus. Phytomedicine. 79:153333.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367(6483):1260–1263.
  • Xiu S, Dick A, Ju H, Mirzaie S, Abdi F, Cocklin S, Zhan P, Liu X. 2020. Inhibitors of SARS-CoV-2 entry: current and future opportunities. J Med Chem. 63(21):12256–12274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.