Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 37, 2023 - Issue 2
294
Views
4
CrossRef citations to date
0
Altmetric
Short Communications

Chemical constituents from the leaves of psidium guajava linn. and their chemotaxonomic significance

, , , , &
Pages 348-353 | Received 07 May 2021, Accepted 24 Jul 2021, Published online: 14 Aug 2021

References

  • Adnyana I. K., Tezuka Y., Banskota A. H., Xiong Q., Tran K. Q., Kadota, S., 2000. Quadranosides I-V, new triterpene glucosides from the seeds of Combretum quadrangulare. Journal of Natural Products. 63: 496–500.
  • An RB, Kim HC, Jeong GS, Oh SH, Oh HC, Kim YC. 2005. Constituents of the aerial parts of Agrimonia pilosa. Nat Prod Sci. 11:196–198.
  • Arima H, Danno GI. 2002. Isolation of antimicrobial compounds from guava (psidium guajava L.) and their structural elucidation. Biosci Biotechnol Biochem. 66(8):1727–1730.
  • Adnyana IK, Tezuka Y, Banskota AH, Xiong Q, Tran KQ, Kadota S. 2000. Quadranosides I-V, new triterpene glucosides from the seeds of Combretum quadrangulare. J Nat Prod. 63(4):496–500.
  • Costa AG, Yoshida NC, Garcez WS, Perdomo RT, Matos MDC, Garcez FR. 2020. Metabolomics Approach Expands the Classification of Propolis Samples from Midwest Brazil. J Nat Prod. 83(2):333–343.
  • Debella A, Kunert O, Schmid M G, Michl G, Bucar F, Abebe D, Haslinger E. 2000. A Diterpene, a Flavonol Glycoside, and a Phytosterol Glycoside from Securidaca longipedunculata and Entada abyssinica. Monatshefte Für Chemie/Chemical Monthly, 131(4): 0401–0408.
  • Djoukeng JD, Abou-Mansour E, Tabacchi R, Tapondjou AL, Bouda H, Lontsi D. 2005. Antibacterial triterpenes from Syzygium guineense (Myrtaceae). J Ethnopharmacol. 101(1-3):283–286.
  • Feng X.H, Wang Z.H, Meng D.L, Li X., 2015. Cytotoxic and antioxidant constituents from the leaves of Psidium guajava. Bioorg Med Chem Lett. 25(10): 2193–2198.
  • Gutierrez-Roman AS, Gonzalez-Cortazar M, Trejo-Tapia G, Herrera-Ruiz M, Zamilpa A, Sanchez-Mendoza E, De La Cruz-Sanchez NG, Jimenez-Ferrer E. 2020. Angiotensin-converting enzyme inhibitors from Salvia elegans Vahl. Nat Prod Res. :1–6.
  • Gu JQ, Wang Y, Franzblau SG, Montenegro G, Yang D, Timmermann BN. 2004. Antitubercular constituents of Valeriana laxiflora. Planta Med. 70(6):509–514.
  • Hao JS, Wang QH, Ba SJRGL, Gong JH, Bao WQ, Bi LGT. 2019. Chemical Constituents of Artemisia ordosica. Chinese Pharmaceutical Journal. 54:863–866.
  • Huang HJ, Ling TJ, Wang HM, Cao AC, Zhang CX, Wei SH. 2017. One new flavonoid from Solanum rostratum. Nat Prod Res. 31(15):1831–1835.
  • Hamid K, Ng I, Tallapragada VJ, Varadi L, Hibbs DE, Hanrahan J, Groundwater PW. 2016. An investigation of the differential effects of ursane triterpenoids from Centella asiatica, and their semisynthetic analogues, on gabaa receptors. Chem Biol Drug Des. 88(3):386–397.
  • Kil HW, Rho T, Yoon KD. 2019. Phytochemical study of aerial parts of Leea asiatica. Molecules. 24:1733–1743.
  • Kuang HX, Xia YG, Yang BY, Wang QH, Lü SW. 2009. Lignan constituents from Chloranthus japonicus Sieb. Arch Pharm Res. 32(3):329–334.
  • Loc TV, Nhu V, Chien TV, Ha L, Thao T, Sung TV. 2018. Synthesis of madecassic acid derivatives and their cytotoxic activity. Zeitschrift Fur Naturforschung B. 73(2):91–98.
  • Li W, Pang X, Han LF, Zhou Y, Cui YM. 2018. [Chemcial constituents of Eclipta prostrata]. Zhongguo Zhong Yao Za Zhi. 43(17):3498–3505.
  • Lou L, Wang YY, Wang JY, Wang J, Lu JC, Jia LY. 2018. Isolation and identification of chemical constituents from Artemisia halodendron Turcz. ex Bess. Journal of Shenyang Pharmaceutical University. 35:725–728.
  • Lee HE, Yang G, Choi JS, Lee JY. 2017. Suppression of primary splenocyte proliferation by Artemisia capillaris and its components. Toxicol Res. 33(4):283–290.
  • Liang J. 2009. Study on resource,extraction process and pharmacological action of centipeda minima a.br.et aschers. Heilongjiang Medicine Journal. 22:835–837.
  • Mahmoudi H, Marzouki M, M’Rabet Y, Mezni M, Ait Ouazzou A, Hosni K. 2020. Enzyme pretreatment improves the recovery of bioactive phytochemicals from sweet basil (Ocimum basilicum L.) leaves and their hydrodistilled residue by-products, and potentiates their biological activities. Arabian Journal of Chemistry. 13: 6451–6460.
  • Matsuzaki K, Ishii R, Kobiyama K, Kitanaka S. 2010. New benzophenone and quercetin galloyl glycosides from psidium guajava L. J Nat Med. 64(3):252–256.
  • Ngo Q-MT, Cao TQ, Woo MH, Min BSun, Weon KY. 2018. Cytotoxic Triterpenoids from the Fruits of Ligustrum japonicum. Nat Prod Sci. 24(2):93–98.
  • Ngbolua KN, Lufuluabo LG, Moke LE, Bongo GN, Liyongo CI, Ashande CM, Sapo BS, Zoawe BG, Mpiana PT. 2018. A review on the Phytochemistry and Pharmacology of Psidium guajava L. (Myrtaceae) and Future direction. Disc Phytomed. 5(2):7–13.
  • Ouyang X-L, Mao W-H, Wang C-G, Pan Y-M, Liang D, Wang H-S. 2019. Five 11α, 12α-epoxy pentacyclic triterpenoid saponins with antithrombus activities from Glechoma longituba. Fitoterapia. 138:104345–104351.
  • Ouyang W, Zhu XA, Shao XH, Liu XJ, Liu RN, Liu X, Du FL, Cao Y. 2014. Chemical Constituents from Ethyl Acetate Extract of Psidium Guajava Linn. leaves. Food Science. 35:30–37.
  • Panthong K, Voravuthikunchai SP. 2020. Eugejambones ad from leaves of Eugenia jambos. Phytochem Lett. 38:49–54.
  • Sun R, Gao JL, Chen H, Liu S, Tang ZZ. 2020. CbCYP716A261, a new β-amyrin 28-hydroxylase involved in conyzasaponin biosynthesis from Conyza blinii. Mol Biol. 54(5):719–729.
  • Sun JH, Yang ZD, Zhang YF. 2019. Chemical constituents and bioactivity of a fungal endophyte from Lamium amplexicaule. Chem Nat Compd. 55(4):775–778.
  • Shu JC, Liu JQ, Chou GX, Wang ZT. 2012. Two new triterpenoids from Psidium guajava. Chin Chem Lett. 23(7):827–830.
  • Venditti A, Ukwueze SE. 2017. A possible glycosidic benzophenone with full substitution on B-ring from Psidium guajava leaves. Nat Prod Res. 31(7):739–741.
  • Wang YS, Zhang HJ, Wang KW, Zhang TT, Fan XF. 2020. Triterpenoids and steroids from Premna fulva. Chem Nat Compd. 56(2):373–375.
  • Wang H, Gao HY, Zhang ZQ, Wu LJ. 2011. Isolation and Identification of Chemical Constituents from Rosmarinus Officinalis L. Modern Chinese Medicine. 13:23–25.
  • Xiao J-Q, Liu W-Y, Sun H-P, Li W, Koike K, Kikuchi T, Yamada T, Li D, Feng F, Zhang J. 2019. Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi. Bioorg Chem. 92:103268–103277.
  • Yener I. 2020. Determination of antioxidant, cytotoxic, anticholinesterase, antiurease, antityrosinase, and antielastase activities and aroma, essential oil, fatty acid, phenolic, and terpenoid-phytosterol contents of Salvia poculata. Ind Crops Prod. 155:112712–112723.
  • Ye JH, Li JX, Xu J, Zhang JJ, Pan LT. 2018. Chemical constituents from Isodon coetsa distributed in Guizhou. Chinese Traditional and Herbal Drugs. 49:2972–2977.
  • Zhang J, Kong LY. 2005. Study on chemical constituents from Artemisia selengensis leaves. Chinese Pharmaceutical Journal. 40:1778–1780.
  • Zhou LY. 2011. Chemical constituents in aerial parts of Callicarpa pedunculata. Chinese Traditional & Herbal Drugs. 42:454–457.
  • Zhu X., Ouyang W., Pan C., Gao Z., Han Y., Song M., Feng K., Xiao H., Cao Y., 2019. Identification of a new benzophenone from Psidium guajava L. leaves and its antineoplastic effects on human colon cancer cells. Food & Function. 10: 4189–4198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.