Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 36, 2022 - Issue 16
169
Views
1
CrossRef citations to date
0
Altmetric
Short Communications

Study on constituents of Scutellaria nepetifolia as a potent source of phytochemicals with NO inhibitory effect

, , , ORCID Icon & ORCID Icon
Pages 4205-4209 | Received 19 Dec 2020, Accepted 24 Jul 2021, Published online: 06 Sep 2021

References

  • Cui L, Wang W, Luo Y, Ning Q, Xia Z, Chen J, Feng L, Wang H, Song J, Tan X, et al. 2019. Polysaccharide from Scutellaria baicalensis Georgi ameliorates colitis via suppressing NF-κB signaling and NLRP3 inflammasome activation. Int J Biol Macromol. 132:393–405.
  • Cui Y, Wang Y, Zhao D, Feng X, Zhang L, Liu C. 2018. Loganin prevents BV-2 microglia cells from Aβ1-42 -induced inflammation via regulating TLR4/TRAF6/NF-κB axis. Cell Biol Int. 42(12):1632–1642.
  • Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, et al. 2008. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol. 4(11):700–707.
  • Gousiadou C, Gotfredsen CH, Matsa M, Hadjipavlou-Litina D, Skaltsa H. 2013. Minor iridoids from Scutellaria albida ssp. albida. Inhibitory potencies on lipoxygenase, linoleic acid lipid peroxidation and antioxidant activity of iridoids from Scutellaria sp. J Enzyme Inhib Med Chem. 28(4):704–710.
  • Gousiadou C, Karioti A, Heilmann J, Skaltsa H. 2007. Iridoids from Scutellaria albida ssp. albida. Phytochemistry. 68(13):1799–1804.
  • Han QT, Ren Y, Li GS, Xiang KL, Dai SJ. 2018. Flavonoid alkaloids from Scutellaria moniliorrhiza with anti-inflammatory activities and inhibitory activities against aldose reductase. Phytochemistry. 152:91–96.
  • Han M-F, Zhang X, Zhang L-Q, Li Y-M. 2018. Iridoid and phenylethanol glycosides from Scrophularia umbrosa with inhibitory activity on nitric oxide production. Phytochem Lett. 28:37–41.
  • Jamzad Z. 2012. Flora of Iran, NO 76: Lamiaceae. Vol. 76. Tehran, Iran: Research Institute of Forests and Rangelands of Iran. (Lamiaceae).
  • Jeong JY, Cha HJ, Choi EO, Kim CH, Kim GY, Yoo YH, Hwang HJ, Park HT, Yoon HM, Choi YH. 2019. Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 schwann cells. Int J Med Sci. 16(1):145–155.
  • Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Yao WF, Gao H, Wei MJ. 2019. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther. 25(5):575–590.
  • Justice MR, Baker SR, Stermitz FR. 1992. C-8 Epimeric iridoid glycosides of Cordylanthus (Scrophulariaceae) species. Phytochemistry. 31(6):2021–2025.
  • Matsa M, Bardakci H, Gousiadou C, Kirmizibekmez H, Skaltsa H. 2019. Secondary metabolites from Scutellaria albida L. ssp. velenovskyi (Rech. f.) Greuter & Burdet. Biochem Syst Ecol. 83:71–76.
  • Murai F, Tagawa M, Damtoft S, Jensen SR, Nielsen BJ. 1984. (1R,5R,8S,9S)-deoxyloganic acid from Nepeta cataria. Chem Pharm Bull (Tokyo). 32(7):2809–2814.
  • Nagy T, Kocsis Á, Morvai M, Szabó L, Podányi B, Gergely A, Jerkovich G. 1998. 2′-, 4′-, and 6′-O-substituted 1, 5, 9-epideoxyloganic acids from Nepeta grandiflora. Phytochemistry. 47(6):1067–1072.
  • Orhan IE, Senol FS, Sener B. 2012. Recent approaches towards selected Lamiaceae plants for their prospective use in neuroprotection. Stud Nat Prod Chem. 38:397–415.
  • Parsa Khankandi H, Behzad S, Mojab F, Ahmadian-Attari MM, Sahranavard S. 2019. Effects of some Lamiaceae species on NO production and cell injury in hydrogen peroxide-induced stress. Iran J Pharm Res. 18(2):826–835.
  • Rungsimakan S, Rowan MG. 2014. Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans. Phytochemistry. 108:177–188.
  • Saracoglu I, Calis I, Inoue M, Ogihara Y. 1995. Studies on constituents with cytotoxic and cytostatic activity of two Turkish medicinal plants Phlomis armeniaca and Scutellaria salviifolia. Biol Pharm Bull. 18(10):1396–1400.
  • Sashourpour M, Zahri S, Radjabian T, Ruf V, Pan-Montojo F, Morshedi D. 2017. A study on the modulation of alpha-synuclein fibrillation by Scutellaria pinnatifida extracts and its neuroprotective properties. PLoS One. 12(9):e0184483.
  • Shang X, He X, He X, Li M, Zhang R, Fan P, Zhang Q, Jia Z. 2010. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol. 128(2):279–313.
  • Sheng G-Q, Zhang J-R, Pu X-P, Ma J, Li C-L. 2002. Protective effect of verbascoside on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Eur J Pharmacol. 451(2):119–124.
  • Takeda Y, Ooiso Y, Masuda T, Honda G, Otsuka H, Sezik E, Yesilada E. 1998. Iridoid and eugenol glycosides from Nepeta cadmea. Phytochemistry. 49(3):787–791.
  • Tran PH, Le VD, Do TH, Nguyen TL, Nguyen PT, Nguyen TT, Nguyen TD. 2019. Anti-inflammatory constituents from Psychotria prainii H. Lév. Nat Prod Res. 33(5):695–700.
  • Wang M, Ma C, Chen Y, Li X, Chen J. 2019. Cytotoxic neo-clerodane diterpenoids from Scutellaria barbata D.Don. Chem Biodivers. 16(2):e1800499.
  • Wang G, Wang F, Liu JK. 2011. Two new phenols from scutellaria barbata. Molecules. 16(2):1402–1408.
  • Xie L-h, Wang X, Basnet P, Matsunaga N, Yamaji S, Yang D-y, Cai S-q, Tani T. 2002. Evaluation of variation of acteoside and three major flavonoids in wild and cultivated Scutellaria baicalensis roots by micellar electrokinetic chromatography. Chem Pharm Bull (Tokyo). 50(7):896–899.
  • Zengin G, Llorent-Martínez EJ, Molina-García L, Fernández-de Córdova ML, Aktumsek A, Uysal S, Rengasamy KRR, Aumeeruddy MZ, Bahadori MB, Mahomoodally MF. 2019. Chemical profile, antioxidant, and enzyme inhibitory properties of two Scutellaria species: S. orientalis L. and S. salviifolia Benth. J Pharm Pharmacol. 71(2):270–280. ].
  • Zhang CH, Sheng JQ, Sarsaiya S, Shu FX, Liu TT, Tu XY, Ma GQ, Xu GL, Zheng HX, Zhou LF. 2019. The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria–Coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway. J Ethnopharmacol. 237:202–214.
  • Zhou Y, Hirotani M, Yoshikawa T, Furuya T. 1997. Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochemistry. 44(1):83–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.