Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 36, 2022 - Issue 22
162
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Phytochemical and in silico studies for potential constituents from Centaurium spicatum as candidates against the SARS-CoV-2 main protease and RNA-dependent RNA polymerase

, , , , , , & show all
Pages 5724-5731 | Received 01 Sep 2021, Accepted 06 Dec 2021, Published online: 27 Dec 2021

References

  • Allam AE, Assaf HK, Hassan HA, Shimizu K, Elshaier YA. 2020. An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of COVID-19. RSC Adv. 10(50):29983–29998.
  • Ahmed E. Allam, Yhiya Amen, Ahmed Ashour, Hamdy K. Assaf, Heba Ali Hassan, Islam M. Abdel-Rahman, Ahmed M. Sayed, Kuniyoshi Shimizu. 2021. In silico study of natural compounds from Sesame against COVID-19 by targeting Mpro, PLpro and RdRp. RSC Adv. 11:22398–22408.
  • Antoine OM, Vincent Z. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 7(1):42717.
  • Bibi H, Ali I, Sadozai S, Atta-Ur R. 2006. Phytochemical studies and antibacterial activity of Centaurium pulchellum Druce. Nat Prod Res. 20:896–901.
  • Boozari M, Hosseinzadeh H. 2021. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res. 35(2):864–876.
  • Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. 2020. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 178:104787.
  • Da Silva Antonio A, Wiedemann LSM, Veiga-Junior VF. 2020. Natural products' role against COVID-19. RSC Adv. 10(39):23379–23393.
  • El Hawary SS, Khattab AR, Marzouk HS, El Senousy AS, Alex MG, Aly OM, Teleb M, Abdelmohsen UR. 2020. In silico identification of SARS-CoV-2 spike (S) protein–ACE2 complex inhibitors from eight Tecoma species and cultivars analyzed by LC-MS. RSC Adv. 10(70):43103–43108.
  • Ertl P, Rohde B, Selzer P. 2000. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 43(20):3714–3717.
  • Ferraz WR, Gomes RA, S Novaes AL, Goulart Trossini GH. 2020. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Future Med Chem. 12(20):1815–1828.
  • Hajimehdipoor H, Dijoux-Franca M-G, Mariotte A-M, Amanzadeh Y, Sadat-Ebrahimi S-E, Ghazi-Khansari M. 2006. Two new xanthone diglycosides from Swertia longifolia Boiss. Nat Prod Res. 20(13):1251–1257.
  • Hamburger M, Hostettmanna M, Stoeckli‐Evans H, Soils PN, Gupta MP, Hostettmanna K. 1990. A novel type of dimeric secoiridoid glycoside from Lisianthius jefensis Robynset Elias. Helv Chim Acta. 73(7):1845–1852.
  • Hossam M, Ashour Walid F, Elkhatib Masudur R, Hatem A. Elshabrawy 2020. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens. 4(9(3):186.
  • Huang L, Chen Y, Xiao J, Luo W, Li F, Wang Y, Wang Y, Wang Y. 2020. Progress in the research and development of anti-COVID-19 drugs. Front Public Health. 8:365–373.
  • Khan RJ, Jha RK, Amera GM, Jain M, Singh E, Pathak A, Singh RP, Muthukumaran J, Singh AK. 2020. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J Biomol Struct Dyn. 39:1–14.
  • Kumarasamy Y, Nahar L, Sarker S. 2003. Bioactivity of gentiopicroside from the aerial parts of Centaurium erythraea. Fitoterapia. 74(1-2):151–154.
  • Luan B, Huynh T, Cheng X, Lan G, Wang H-R. 2020. Targeting proteases for treating COVID-19. J Proteome Res. 19(11):4316–4326.
  • Mengist HM, Dilnessa T, Jin T. 2021. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem. 9:622898.
  • Mihaylova D, Vrancheva R, Popova A. 2019. Phytochemical profile and in vitro antioxidant activity of Centaurium erythraea Rafn. Bulg Chem Commun. 51:95–100.
  • Peres V, Nagem TJ, de Oliveira FF. 2000. Tetraoxygenated naturally occurring xanthones. Phytochemistry. 55(7):683–710.
  • Piątczak E, Kuźma Ł, Skała E, Żebrowska M, Balcerczak E, Wysokińska H. 2015. Iridoid and phenylethanoid glycoside production and phenotypical changes in plants regenerated from hairy roots of Rehmannia glutinosa Libosch. Plant Cell Tiss Organ Cult. 122(2):259–266.
  • Takagi S, Yamaki M, Yumioka E, Nishimura T, Sakina K. 1982. Studies on the constituents of Erythraea-Centaurium (Linne) Persoon. 2. The structure of centauroside, a new bis-secoiridoid glucoside. J Pharm Soc Jpn. 102(4):313–317.
  • Valentão P, Areias F, Amaral J, Andrade P, Seabra R. 2000. Tetraoxygenated xanthones from Centaurium erythraea. Nat Prod J. 14(5):319–323.
  • Zahran EM, Albohy A, Khalil A, Ibrahim AH, Ahmed HA, El-Hossary EM, Bringmann G, Abdelmohsen UR. 2020. Bioactivity potential of marine natural products from scleractinia-associated microbes and in silico anti-SARS-CoV-2 evaluation. Mar Drugs. 18(12):645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.