Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 37, 2023 - Issue 17
128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of 1-hydroxy-3-O-substituted xanthone derivatives and their structure-activity relationship on acetylcholinesterase inhibitory effect

ORCID Icon, , & ORCID Icon
Pages 2849-2861 | Received 16 May 2022, Accepted 14 Oct 2022, Published online: 18 Nov 2022

References

  • Alawi MS, Awad TA, Mohamed MA, Khalid A, Ismail EMO, Alfatih F, Naz S, Ul-Haq Z. 2020. Insights into the molecular basis of acetylcholinesterase inhibition by xanthones: an integrative in silico and in vitro approach. Mol Simul. 46(4):253–261.
  • Alzheimer’s Association. 2020. Alzheimer’s disease facts and figures. Alzheimers Dement. 16(3):391–460.
  • Belluti F, Rampa A, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Cavalli A, Recanatini M, Valenti P. 2005. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation. J Med Chem. 48(13):4444–4456.
  • Birks JS, Harvey RJ. 2018. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 6(6):CD001190.
  • Blackard WG, Jr., Sood GK, Crowe DR, Fallon MB. 1998. Tacrine. A cause of fatal hepatotoxicity? J Clin Gastroenterol. 26(1):57–59.
  • Chi XQ, Hou B, Yang L, Zi CT, Lv YF, Li JY, Ren FC, Yuan MY, Hu JM, Zhou J. 2020. Design, synthesis and cholinesterase inhibitory activity of alpha-mangostin derivatives. Nat Prod Res. 34(10):1380–1388.
  • Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 11(3):315–335.
  • Craig LA, Hong NS, McDonald RJ. 2011. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev. 35(6):1397–1409.
  • Crismon ML. 1994. Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother. 28(6):744–751.
  • Eaton PE, Carlson GR, Lee JT. 1973. Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. J Org Chem. 38(23):4071–4073.
  • Ee G, Teh SS, Mah SH, Jamaluddin N, Sahimi M, Ahmad Z. 2015. Acetyl-cholinesterase enzyme inhibitory effect of Calophyllum species. Trop J Pharm Res. 14(11):2005.
  • Ellman GL, Courtney K, Andres V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7(2):88–95.
  • Ellman GL, Courtney KD, Andres V, Jr., Feather-Stone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 7(2):88–95.
  • Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C. 2020. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 19(3):255–265.
  • Frahm AW, Chaudhuri RK. 1979. 13 C NMR spectroscopy of substituted xanthones—II: 13C NMR spectral study of polyhydroxy xanthones. Tetrahedron. 35(17):2035–2038.
  • Freitas VLS, Ribeiro da Silva M. 2018. Influence of hydroxyl functional group on the structure and stability of xanthone: a computational approach. Molecules. 23(11):2962.
  • Grossberg S. 2017. Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia and Alzheimer’s disease. Front Neural Circuits. 11:82.
  • Grover PK, Shah GD, Shah RC. 1955. Xanthones. Part IV. A new synthesis of hydroxyxanthones and hydroxybenzophenones. J Chem Soc.1955(0):3982–3985.
  • Gunter NV, Teh SS, Lim YM, Mah SH. 2020. Natural xanthones and skin inflammatory diseases: multitargeting mechanisms of action and potential application. Front Pharmacol. 11(1873):594202.
  • Guo N, Liu J, Qin L, Jiang D, You X, Lu K, Teng Y-O, Yu P. 2015. Synthesis and antitumor activity evaluation of a novel series of xanthone derivatives. J Asian Nat Prod Res. 17(4):377–383.
  • Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. 2020. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 19(2):147–157.
  • Hoenig MC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur OA, Jessen F, Fliessbach K, Neumaier B, Fink GR, et al. 2018. Networks of tau distribution in Alzheimer’s disease. Brain. 141(2):568–581.
  • Jang C, Yadav DK, Subedi L, Venkatesan R, Venkanna A, Afzal S, Lee E, Yoo J, Ji E, Kim SY, et al. 2018. Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Sci Rep. 8(1):14921.
  • Kwong HC, Mah SH, Chia TS, Quah CK, Lim GK, Kumar CSC. 2017. Cholinesterase inhibitory activities of adamantyl-based derivatives and their molecular docking studies. Molecules. 22(6):1005.
  • Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, Ho ASH, Mah SH. 2021. New 3-O-substituted xanthone derivatives as promising acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem. 36(1):627–639.
  • Lou YH, Wang JS, Dong G, Guo PP, Wei DD, Xie S, Yang MH, Kong LY. 2015. The acute hepatotoxicity of tacrine explained by 1H NMR based metabolomic profiling. Toxicol Res. 4(6):1465–1478.
  • Luo L, Li Y, Qiang X, Cao Z, Xu R, Yang X, Xiao G, Song Q, Tan Z, Deng Y. 2017. Multifunctional thioxanthone derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease. Bioorg Med Chem. 25(6):1997–2009.
  • Menendez CA, Biscussi B, Accordino S, Paula Murray A, Gerbino DC, Appignanesi GA. 2017. Design, synthesis and biological evaluation of 1,3-dihydroxyxanthone derivatives: effective agents against acetylcholinesterase. Bioorg Chem. 75(5):201–209.
  • Nag G, Das S, Das S, Mandal S, De B. 2015. Antioxidant, anti-acetylcholinesterase and antiglycosidase properties of three species of Swertia, their xanthones and amarogentin: a comparative study. Phcog J. 7(2):117–123.
  • Narasimhan S, Maheshwaran S, Abu-Yousef IA, Majdalawieh AF, Rethavathi J, Das PE, Poltronieri P. 2017. Anti-bacterial and anti-fungal activity of xanthones obtained via semisynthetic modification of α-mangostin from Garcinia mangostana. Molecules. 22(2):275–288.
  • Qin J, Lan W, Liu Z, Huang J, Tang H, Wang H. 2013. Synthesis and biological evaluation of 1, 3-dihydroxyxanthone mannich base derivatives as anticholinesterase agents. Chem Cent J. 7(1):78.
  • Rampa A, Piazzi L, Belluti F, Gobbi S, Bisi A, Bartolini M, Andrisano V, Cavrini V, Cavalli A, Recanatini M, et al. 2001. Acetylcholinesterase inhibitors: SAR and kinetic studies on omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl derivatives. J Med Chem. 44(23):3810–3820.
  • Saenkham A, Jaratrungtawee A, Siriwattanasathien Y, Boonsri P, Chainok K, Suksamrarn A, Namsa-aid M, Pattanaprateeb P, Suksamrarn S. 2020. Highly potent cholinesterase inhibition of geranylated xanthones from Garcinia fusca and molecular docking studies. Fitoterapia. 146:104637.
  • Seca AM, Leal SB, Pinto DC, Barreto MC, Silva AM. 2014. Xanthenedione derivatives, new promising antioxidant and acetylcholinesterase inhibitor agents. Molecules. 19(6):8317–8333.
  • Svobodova B, Mezeiova E, Hepnarova V, Hrabinova M, Muckova L, Kobrlova T, Jun D, Soukup O, Jimeno ML, Marco-Contelles J, et al. 2019. Exploring structure-activity relationship in tacrine-squaramide derivatives as potent cholinesterase inhibitors. Biomolecules. 9(8):379.
  • Syahri J, Yuanita E, Achromi B, Wathon M, Syafri R, Armunanto R, Bambang P. 2017. Xanthone as antimalarial: QSAR analysis, synthesis, molecular docking and in-vitro antimalarial evaluation. Orient J Chem. 33(1):29–40.
  • Teh SS, Ee GCL, Mah SH, Ahmad Z. 2016. Structure–activity relationship study of secondary metabolites from Mesua beccariana, Mesua ferrea and Mesua congestiflora for anticholinesterase activity. Med Chem Res. 25(5):819–823.
  • Thongchai K, Anan A, Wanchalerm U, Yamaratee J, Sunit S. 2014. Synthesis of hydroxyxanthones and evaluations for their acetylcholinesterase inhibitory and neurotoxicity activities. KKU Sci J. 42(1):212–220.
  • Vanessa VV, Mah SH. 2021. Xanthone: Potential acetylcholinesterase inhibitor for alzheimer’s disease treatment. Mini Rev Med Chem. 21(17):2521–2543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.