27
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Natural products from Camellia oleifera fruit and its comprehensive utilisation

, , , , &
Received 13 Oct 2023, Accepted 11 Jun 2024, Published online: 20 Jun 2024

References

  • Chang Y, Gong W, Xu J, Gong H, Song Q, Xiao S, Yuan D. 2022. Integration of semi-in vivo assays and multi-omics data reveals the effect of galloylated catechins on self-pollen tube inhibition in Camellia oleifera. Hortic Res. 10(1):uhac248. doi:10.1093/hr/uhac248.
  • Chaydarreh KC, Lin X, Guan L, Hu C. 2022. Interaction between particle size and mixing ratio on porosity and properties of tea oil camellia (Camellia oleifera Abel.) shells-based particleboard. J Wood Sci. 68(1):43. doi:10.1186/s10086-022-02052-3.
  • Chaydarreh KC, Lin X, Guan L, Yun H, Gu J, Hu C. 2021. Utilization of tea oil camellia (Camellia oleifera Abel.) shells as alternative raw materials for manufacturing particleboard. Ind Crops Prod. 161:113221. doi:10.1016/j.indcrop.2020.113221.
  • Chen L, Teng H, Xie Z, Cao H, Cheang WS, Skalicka-Woniak K, Georgiev MI, Xiao J. 2018. Modifications of dietary flavonoids towards improved bioactivity: an update on structure-activity relationship. Crit Rev Food Sci Nutr. 58(4):513–527. doi:10.1080/10408398.2016.1196334.
  • Chen Q, Wu X, Liu L, Shen J. 2014. Polyphenol-rich extracts from Oiltea camellia prevent weight gain in obese mice fed a high-fat diet and slowed the accumulation of triacylglycerols in 3T3-L1 adipocytes. J Funct Foods. 9:148–155. doi:10.1016/j.jff.2014.03.034.
  • Chen S, Liang JK, Zhang BG, Wu ZG, Lei H, Li LF, Yang SL. 2021. Study on Camellia Oleifera protein based wood adhesive by epoxy resin and its crosslinking mechanism. J Wuhan Univ Technol-Mat Sci Edit. 36(4):607–613. doi:10.1007/s11595-021-2451-5.
  • Chen YF, Yang CH, Chang MS, Ciou YP, Huang YC. 2010. Foam properties and detergent abilities of the saponins from Camellia oleifera. Int J Mol Sci. 11(11):4417–4425. doi:10.3390/ijms11114417.
  • Chen Z, Xu H-N, Ouyang X-K. 2022. The simultaneous production of two distinct types of cellulose nanocrystals. Langmuir. 38(19):5996–6003. doi:10.1021/acs.langmuir.2c00151.
  • Cheng HY, Xu TQ, Hu YL, Shu Q, Xu W, Fan CL, Zhou GX. 2023. Two new aryltetralin-type lignans from Camellia oleifera husk. Nat Prod Res. 1–8 (Early Access). doi:10.1080/14786419.2023.2172005.
  • Cheng Y-T, Wu S-L, Ho C-Y, Huang S-M, Cheng C-L, Yen G-C. 2014. Beneficial effects of Camellia oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF. J Agric Food Chem. 62(3):642–650. doi:10.1021/jf404614k.
  • Chiang S-S, Chen L-S, Chu C-Y. 2021. Active food ingredients production from cold pressed processing residues of Camellia oleifera and Camellia sinensis seeds for regulation of blood pressure and vascular function. Chemosphere. 267:129267. doi:10.1016/j.chemosphere.2020.129267.
  • Cui C, Yang Y, Zhao T, Zou K, Peng C, Cai H, Wan X, Hou R. 2019. Insecticidal Activity and Insecticidal Mechanism of Total Saponins from Camellia oleifera. Molecules. 24(24):4518. doi:10.3390/molecules24244518.
  • Dai T-t, Shen J-f 2011. Study on extraction process of tannin from the shell of Camellia oleifera Abel. and hypoglycemic effect. Sci Technol Food Industry. 32(09):255–257.
  • Das AK, Islam MN, Faruk MO, Ashaduzzaman M, Dungani R. 2020. Review on tannins: extraction processes, applications and possibilities. S Afr J Bot. 135:58–70. doi:10.1016/j.sajb.2020.08.008.
  • Deng X, Wu Z, Zhang B, Lei H, Liang J, Li L, Tu Y, Li D, Xiao G. 2022. A new wood adhesive based on recycling Camellia oleifera cake-protein: preparation and properties. Materials (Basel). 15(5):1659. doi:10.3390/ma15051659.
  • Di T-M, Yang S-L, Du F-Y, Zhao L, Li X-H, Xia T, Zhang X-F. 2018. Oleiferasaponin A(2), a novel saponin from Camellia oleifera Abel. seeds, inhibits lipid accumulation of HepG2 cells through regulating fatty acid metabolism. Molecules. 23(12):3296. doi:10.3390/molecules23123296.
  • Fan DB, Qin TF, Chu FX. 2011. A new interior plywood adhesive based on oil-tea cake. AMR. 194-196:2183–2186. doi:10.4028/www.scientific.net/AMR.194-196.2183.
  • Fan K-f, Wu X-h 2013. Preparation of activated carbons from Camellia nutshell. Modern Food Science and Technology. 29:339–341 + 370.
  • Fang X, Du M, Luo F, Jin Y. 2015. Physicochemical properties and lipid composition of Camellia seed oil (Camellia oleifera Abel.) extracted using different methods. FSTR. 21(6):779–785. doi:10.3136/fstr.21.779.
  • Feás X, Estevinho LM, Salinero C, Vela P, Sainz MJ, Vázquez-Tato MP, Seijas JA. 2013. Triacylglyceride, antioxidant and antimicrobial features of virgin Camellia oleifera, C. reticulata and C. sasanqua oils. Molecules. 18(4):4573–4587. doi:10.3390/molecules18044573.
  • Feng S, Tang M, Jiang Z, Ruan Y, Liu L, Kong Q, Xiang Z, Chen T, Zhou L, Yang H, et al. 2022. Optimization of extraction process, structure characterization, and antioxidant activity of polysaccharides from different parts of Camellia oleifera Abel. Foods. 11(20):3185. doi:10.3390/foods11203185.
  • Fu G, Chen K, Wang J, Wang M, Li R, Wu X, Wu C, Zhang P, Liu C, Wan Y. 2020. Screening of tea saponin-degrading strain to degrade the residual tea saponin in tea seed cake. Prep Biochem Biotechnol. 50(7):697–707. doi:10.1080/10826068.2020.1731827.
  • Gan Y, Li X, Yang L, Ding C, Zeng X, Zhang H, Chen Z, Du X. 2015. In vitro antioxidant and antiproliferative activities of the different extracts from shell of Camellia oleifera Abel. Sci Technol Food Industry. 36(08):171–174.
  • Gong W, Xiao S, Wang L, Liao Z, Chang Y, Mo W, Hu G, Li W, Zhao G, Zhu H, et al. 2022. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. Plant J. 110(3):881–898. doi:10.1111/tpj.15739.
  • Guo H, Tan H, Luo J. 2010. Main components analysis of Camellia chekiang-oleosa Hu fruit. China Oils Fats. 35(01):70–73.
  • He Y-C, Wu M-J, Lei X-L, Yang J-F, Gao W, Bae Y-S, Kim T-H, Choi S-E, Li B-T. 2021. Gallotannins from nut shell extractives of Camellia oleifera. J Korean Wood Sci Technol. 49(3):267–273. doi:10.5658/WOOD.2021.49.3.267.
  • Hong C, Chang C, Zhang H, Jin Q, Wu G, Wang X. 2019. Identification and characterization of polyphenols in different varieties of Camellia oleifera seed cakes by UPLC-QTOF-MS. Food Res Int. 126:108614. doi:10.1016/j.foodres.2019.108614.
  • Hu J, Shi Y, Liu Y, Chang S. 2018. Anatomical structure of Camellia oleifera shell. Protoplasma. 255(6):1777–1784. doi:10.1007/s00709-018-1271-8.
  • Hu K, Ma X, Mo X. 2017. Study on process and performance of Camellia shell particle board. Hunan Forestry Sci Technol. 44(04):59–63.
  • Huang L, Peng H, Xiao Z, Wu H, Fu G, Wan Y, Bi H. 2022. Production of furfural and 5-hydroxymethyl furfural from Camellia oleifera fruit shell in [Bmim]HSO4/H2O/1,4-dioxane biphasic medium. Ind Crops Prod. 184:115006. doi:10.1016/j.indcrop.2022.115006.
  • Huang T, Zhou W, Ma X, Jiang J, Zhang F, Zhou W, He H, Cui G. 2021. Oral administration of Camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet. FEMS Microbiol Lett. 368(10):fnab063. doi:10.1093/femsle/fnab063.
  • Jung E, Lee J, Baek J, Jung K, Lee J, Huh S, Kim S, Koh J, Park D. 2007. Effect of Camellia japonica oil on guman type I procollagen production and skin barrier function. J Ethnopharmacol. 112(1):127–131. doi:10.1016/j.jep.2007.02.012.
  • Kang S, Jian-Chun J, Dan-Dan C. 2011. Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification. Biomass Bioenergy. 35(8):3643–3647. doi:10.1016/j.biombioe.2011.05.007.
  • Kim JH, Kim JH, Kim MY. 2022. Effect of extraction solvents on antioxidant and skin-whitening potentials of defatted Camellia seed cakes. JANS. 14(2):341–348. doi:10.31018/jans.v14i2.3368.
  • Ku C, Li K, Guo H, Wu Q, Yan L. 2022. One-step construction of mesoporous cyano and sulfur co-modified carbon nitride for photocatalytic valorization of lignin to functionalized aromatics. Appl Surf Sci. 592:153266. doi:10.1016/j.apsusc.2022.153266.
  • Lei X, Liu Q, Cao Z, Zhang J, Kuang T, Fang Y, Liu G, Qian K, Fu J, Du HJF, et al. 2020. Camellia oil (Camellia oleifera Abel.) attenuates CCl 4-induced liver fibrosis via suppressing hepatocyte apoptosis in mice. Food Funct. 11(5):4582–4590. doi:10.1039/c9fo02258a.
  • Li G, Gu Y, Yang L, Ma J. 2019. Determination of active components in shells and dregs of different Camellia oleifera varieties. Guangxi Forestry Sci. 48(03):348–352.
  • Li G, Ma L, Yan Z, Zhu Q, Cai J, Wang S, Yuan Y, Chen Y, Deng S. 2022. Extraction of oils and phytochemicals from Camellia oleifera seeds: trends, challenges, and innovations. Processes. 10(8):1489. doi:10.3390/pr10081489.
  • Li H, Yang W, Yang Z, Wang C, Fan F. 2021. Physicochemical properties and structural characterization of lignin from Camellia oleifera shell. Sci Technol Food Industry. 42(04):33–38.
  • Li K, Liu S, Shu T, Yan L, Guo H, Dai Y, Luo X, Luo S. 2016. Fabrication of carbon microspheres with controllable porous structure by using waste Camellia oleifera shells. Mater Chem Phys. 181:518–528. doi:10.1016/j.matchemphys.2016.06.089.
  • Li TT, Zhang H, Wu CE. 2014. Screening of antioxidant and antitumor activities of major ingredients from defatted Camellia oleifera seeds. Food Sci Biotechnol. 23(3):873–880. doi:10.1007/s10068-014-0117-1.
  • Liang B, Shao J, Yang S, Gao J, Zhang P. 2020. Preparation and slow release properties of Camellia oil microcapsules. Fine Chem. 37(12):2541–2553.
  • Liang Q, Liu Z, Ai H, Liu X, Zhang S. 2020. Preparation of C/ZnO composite based on Camellia oleifera shell and its application in lead carbon battery. CIESC J. 71(05):2292–2304.
  • Liao D, Shi W, Gao J, Deng B, Yu R. 2021. Modified Camellia oleifera shell carbon with enhanced performance for the adsorption of cooking fumes. Nanomaterials. 11(5):1349. doi:10.3390/nano11051349.
  • Lin S, Chen Y, Bai Y, Cai H, Wei H, Tian H, Zhao J, Chen Y, Yang G, Gu X, et al. 2018. Effect of tea saponin-treated host plants on activities of antioxidant enzymes in larvae of the diamondback moth Plutella xylostella (lepidoptera: plutellidae). Environ Entomol. 47(3):749–754. doi:10.1093/ee/nvy031.
  • Ling X-l, Yang C-f, Ning J-x 2020. Research progress in modification of cellulose and application. J Text Sci Eng. 37(03):60–85.
  • Liu C, Wu X. 2021. Purification and inhibitory effect on α-amylase activity of proanthocyanidins from Camellia oleifera shell. Sci Technol Food Industry. 42(08):142–146.
  • Liu L, Qin X, Ning Z, Wang Y, Yang B. 2012. Enzymatic synthesis of an isopropyl ester by alcoholysis of Camellia oil]. J Americ Oil Chem Soc. 89(7):1277–1285. doi:10.1007/s11746-012-2019-9.
  • Liu Q, Li D, Cheng H, Cheng J, Du K, Hu Y, Chen Y. 2021. High mesoporosity phosphorus-containing biochar fabricated from Camellia oleifera shells: impressive tetracycline adsorption performance and promotion of pyrophosphate-like surface functional groups (C-O-P bond). Bioresour Technol. 329:124922. doi:10.1016/j.biortech.2021.124922.
  • Liu W, Wang M, Xu S, Gao C, Liu J. 2019. Inhibitory effects of shell of Camellia oleifera Abel extract on mushroom tyrosinase and human skin melanin. J Cosmet Dermatol. 18(6):1955–1960. doi:10.1111/jocd.12921.
  • Long L-j, Wang L-l, Chen X-p, Liang J-z, Wei X-j, Tang H-m 2012. One-step preparation of activated carbon from Camellia oleifera shell by microwave assisted H3PO4 activation. J Guangxi Univ. 37:425–429.
  • Luan F, Zeng J, Yang Y, He X, Wang B, Gao Y, Zeng N. 2020. Recent advances in Camellia oleifera Abel: a review of nutritional constituents, biofunctional properties, and potential industrial applications. J Funct Foods. 75:104242. doi:10.1016/j.jff.2020.104242.
  • Mei L, Qiao H, Ke F, Peng C, Hou R, Wan X, Cai H. 2020. One-step synthesis of zirconium dioxide-biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water. Appl Surf Sci. 509:144685. doi:10.1016/j.apsusc.2019.144685.
  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites [10.1039/C0CS00108B]. Chem Soc Rev. 40(7):3941–3994. doi:10.1039/c0cs00108b.
  • Nie Z, Huang Y, Ma B, Qiu X, Zhang N, Xie X, Wu Z. 2019. Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-Ion storage. Sci Rep. 9(1):15032. doi:10.1038/s41598-019-50330-w.
  • Parnsamut N, Kanlayavattanakul M, Lourith N. 2017. Development and efficacy assessments of tea seed oil makeup remover. Ann Pharm Fr. 75(3):189–195. doi:10.1016/j.pharma.2016.11.001.
  • Qian B, Yin L, Yao X, Zhong Y, Gui J, Lu F, Zhang F, Zhang J. 2018. Effects of fermentation on the hemolytic activity and degradation of Camellia oleifera saponins by Lactobacillus crustorum and Bacillus subtilis. FEMS Microbiol Lett. 365(7):fny014. doi:10.1093/femsle/fny014.
  • Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl. 50(3):586–621. doi:10.1002/anie.201000044.
  • Rafatullah M, Ahmad T, Ghazali A, Sulaiman O, Danish M, Hashim R. 2013. Oil Palm biomass as a precursor of activated carbons: a review. Crit Rev Environ Sci Technol. 43(11):1117–1161. doi:10.1080/10934529.2011.627039.
  • Ren HJ, Xiao Q, Zhou Z, Li X, Wang CJ. 2015. Study of tea saponin toothpaste. Tenside Surfactants Detergents. 52(4):329–332. doi:10.3139/113.110383.
  • Shi J, Yao J, Li Z, Zeng G, Zhu H. 2019. Production and modification of cellulose nanocrystals from Camellia oleifera fruit shells and its effect on the mechanical properties of poly(lactic acid). Nanosci Nanotechnol Lett. 11(3):428–433. doi:10.1166/nnl.2019.2894.
  • Tang N, Tan X, Cai Y, He M-Y, Xiang Z-Y, Ye H, Ma J-L. 2022. Characterizations and application potentials of the hemicelluloses in waste oil-tea camellia fruit shells from Southern China. Ind Crops Prod. 178:114551. doi:10.1016/j.indcrop.2022.114551.
  • Torres LAZ, Lorenci Woiciechowski A, de Andrade Tanobe VO, Karp SG, Guimarães Lorenci LC, Faulds C, Soccol CR. 2020. Lignin as a potential source of high-added value compounds: a review. J Cleaner Prod. 263:121499. doi:10.1016/j.jclepro.2020.121499.
  • Trache D, Hussin MH, Haafiz MKM, Thakur VK. 2017. Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 9(5):1763–1786. doi:10.1039/c6nr09494e.
  • Tsai C-E, Lin L-H. 2019. DPPH scavenging capacity of extracts from Camellia seed dregs using polyol compounds as solvents. Heliyon. 5(8):e02315. doi:10.1016/j.heliyon.2019.e02315.
  • Tu PS, Tung YT, Lee WT, Yen GC. 2017. Protective effect of Camellia oil (Camellia oleifera Abel.) against ethanol-induced acute oxidative Injury of the gastric mucosa in mice. J Agric Food Chem. 65(24):4932–4941. doi:10.1021/acs.jafc.7b01135.
  • Wang D, Yan E, Chen S, Li Y, Li Y. 2021. Research progress on modification and application of hemicellulose. New Chem Mater. 49(11):16–19.
  • Wang Q, Hu J, Yang T, Chang S. 2021. Anatomy and lignin deposition of stone cell in Camellia oleifera shell during the young stage. Protoplasma. 258(2):361–370. doi:10.1007/s00709-020-01568-z.
  • Wang S, Shan C, Ma S, Nie W. 2018. Tea seed oil refining technology and its application in cosmetics. Chin Wild Plant Resour. 37(06):57–58 + 62.
  • Wang Z, Hu C, Tu D, Zhang W, Guan L. 2020. Preparation and adsorption property of activated carbon made from Camellia olerea shells. J Forestry Eng. 5:96–102.
  • Wei M, Hu Y, Zou W, Li Y, Cao Y, Li S, Huang J, Xing L, Huang B, Wang X. 2022. Physicochemical property and antioxidant activity of polysaccharide from the seed cakes of Camellia oleifera Abel. Food Sci Nutr. 10(5):1667–1682. doi:10.1002/fsn3.2789.
  • Weng MH, Chen SY, Li ZY, Yen GC. 2020. Camellia oil alleviates the progression of Alzheimer’s disease in aluminum chloride-treated rats. Free Radic Biol Med. 152:411–421. doi:10.1016/j.freeradbiomed.2020.04.004.
  • Wu C-C, Tung Y-T, Chen S-Y, Lee W-T, Lin H-T, Yen G-C. 2020. Anti-inflammatory, antioxidant, and microbiota-modulating effects of Camellia oil from Camellia brevistyla on acetic acid-induced colitis in rats. Antioxidants. 9(1):58. doi:10.3390/antiox9010058.
  • Wu Y, Sheng Z, Zheng X, Yun Y, Chen H, Zhang W. 2021. Effects of different pretreatment methods on the composition, structure and antioxidant activity of Camellia oleifera episperm. Chin J Trop Crops. 42(02):553–561.
  • Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, et al. 2016. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr. 56(Suppl 1):S60–S84. doi:10.1080/10408398.2015.1069255.
  • Xiong D, Xu G, Zhang T, Chen J, Chen C. 2015. Activated carbon prepared from Camellia oleifera shell residue after alcohol extraction. Chem Ind Eng Prog. 34(12):4280–4284.
  • Xiong Z, Chen M-e, Zhang B-l 2013. Research on extraction of protein from Camellia oleifera seed meal and the functional properties. Sci Technol Cereals Oils Foods. 21(01):27–30.
  • Xu W, Zhang W, Han M, Zhang F, Lei F, Cheng X, Ning R, Wang K, Ji L, Jiang J. 2022. Production of xylooligosaccharides from Camellia oleifera Abel fruit shell using a shell-based solid acid catalyst. Bioresour Technol. 365:128173. doi:10.1016/j.biortech.2022.128173.
  • Yan Q-W, Fu H-Z, Luo Y-H, Zhou G-P, Wan K-H, Zhong R-J. 2016. Two new triterpenoid glycosides from the stems of Camellia oleifera Abel. Nat Prod Res. 30(13):1484–1492. doi:10.1080/14786419.2015.1113529.
  • Yang J, Wu X-h 2020. Optimization of the preparation conditions for the activated carbon from Camellia seed shell by response surface methodology. J South Agric. 51:1426–1434.
  • Yang Q, Fang F, Li Y, Ye Y. 2017. Neuroprotective effects of the nanoparticles of zinc sapogenin from seeds of Camellia oleifera. J Nanosci Nanotechnol. 17(4):2394–2400. doi:10.1166/jnn.2017.13436.
  • Yao GL, He W, Wu YG, Chen J, Hu XW, Yu J. 2019. Purification of angiotensin-I-converting enzyme inhibitory peptides derived from Camellia oleifera Abel seed meal hydrolysate. J Food Qual. 2019:1–9. doi:10.1155/2019/7364213.
  • Yao J, Huang H, Mao L, Li Z, Zhu H, Liu Y. 2017. Structural and optical properties of cellulose nanocrystals isolated from the fruit shell of Camellia oleifera Abel. Fibers Polym. 18(11):2118–2124. doi:10.1007/s12221-017-7489-9.
  • Ye C, He Z, Peng J, Wang R, Wang X, Fu M, Zhang Y, Wang A, Liu Z, Jia G, et al. 2023. Genomic and genetic advances of oiltea-camellia (Camellia oleifera). Front Plant Sci. 14:1101766. [English. doi:10.3389/fpls.2023.1101766.
  • Yu NX, Shao SX, Huan WW, Ye Q, Nie XH, Lu YC, Meng XH. 2022. Preparation of novel self-assembled albumin nanoparticles from Camellia seed cake waste for lutein delivery. Food Chem. 389:133032. doi:10.1016/j.foodchem.2022.133032.
  • Yuan C, Li Y, Li Q, Jin R, Ren L. 2018. Purification of tea saponins and evaluation of its effect on alcohol dehydrogenase activity. Open Life Sci. 13(1):56–63. doi:10.1515/biol-2018-0008.
  • Zhan X, Luo Z, Wu Z, Liang X. 2019. Different nitrogen sources and microbial inoculants could improve the composting of Camellia oleifera shell. Mol Plant Breed. 17(12):4153–4160.
  • Zhang F, Zhu F, Chen B, Su E, Chen Y, Cao F. 2022. Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: a review. Food Res Int. 156:111159. doi:10.1016/j.foodres.2022.111159.
  • Zhang J, Gong L, Sun K, Jiang J, Zhang X. 2012. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J Solid State Electrochem. 16(6):2179–2186. doi:10.1007/s10008-012-1639-1.
  • Zhang J, Ying Y, Li X, Yao X. 2020a. Changes in tannin and saponin components during co-composting of Camellia oleifera Abel shell and seed cake. PLOS One. 15(3):e0230602. doi:10.1371/journal.pone.0230602.
  • Zhang J, Ying Y, Li X, Yao X. 2020b. Physical and chemical properties of Camellia oleifera shell composts with different additives and its maturity evaluation system. Environ Sci Pollut Res Int. 27(28):35294–35302. doi:10.1007/s11356-020-09861-3.
  • Zhang J, Ying Y, Yao X, Huang W, Tao X. 2020. Degradations of tannin and saponin and changes in nutrition during co-composting of shell and seed cake of Camellia oleifera Abel. BioRes. 15(2):2721–2734. doi:10.15376/biores.15.2.2721-2734.
  • Zhang L, Wang Y, Wu D, Xu M, Chen J. 2011. Microwave-assisted extraction of polyphenols from Camellia oleifera fruit hull. Molecules. 16(6):4428–4437. doi:10.3390/molecules16064428.
  • Zhang S, Chen S, Liang W, Yan X, Feng Y, Li G, Yang H. 2021. Functional bacillus species in Camellia seed shell compost. Fujian J Agric Sci. 36(07):843–854.
  • Zhang X-F, Han Y-Y, Di T-M, Gao L-P, Xia T. 2021. Triterpene saponins from tea seed pomace (Camellia oleifera Abel) and their cytotoxic activity on MCF-7 cells in vitro; early access. Nat Prod Res. 35(16):2730–2733. doi:10.1080/14786419.2019.1656625.
  • Zhang X-F, Yang S-L, Han Y-Y, Zhao L, Lu G-L, Xia T, Gao L-P. 2014. Qualitative and quantitative analysis of triterpene saponins from tea seed pomace (Camellia oleifera Abel) and their activities against bacteria and fungi. Molecules. 19(6):7568–7580. doi:10.3390/molecules19067568.
  • Zhao G, Fan F, Huai J. 2022. Preparation and properties of nano-SiO2/gelatin camellia oil microcapsules. Fine Chemicals. 39(02):367–374+402 (in Chinese). doi:10.13550/j.jxhg.20210820.
  • Zhou F, Wang N, Zhang J, Yao X, Zhang T, Zhang X, Zhan L, Li J. 2022. Formulation of substrates with agricultural and forestry wastes for Camellia oleifera Abel seedling cultivation. PLOS One. 17(7):e0265979-e0265979. doi:10.1371/journal.pone.0265979.
  • Zhou H, Huang F, Huang Q, Niu Y, He J. 2010. Comparison of bio-fermentation and chemial method in the improvement of the equality of oil-tea camellia seed meal. China Oils Fats. 35(09):40–43.
  • Zhu C, Zhang M, Tang Q, Yang Q, Li J, He X, Ye Y. 2019. Structure and activity of the Camellia oleifera sapogenin derivatives on growth and biofilm inhibition of Staphylococcus aureus and Escherichia coli. J Agric Food Chem. 67(51):14143–14151. doi:10.1021/acs.jafc.9b03577.
  • Zhu G, Liu H, Xie Y, Liao Q, Lin Y, Liu Y, Liu Y, Xiao H, Gao Z, Hu S. 2020. Postharvest processing and storage methods for Camellia oleifera Seeds. Food Rev Int. 36(4):319–339. doi:10.1080/87559129.2019.1649688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.