333
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Assessing the elastic properties and ductility of Fe–Cr–Al alloys from ab initio calculations

, , &
Pages 122-133 | Received 26 Jun 2015, Accepted 10 Nov 2015, Published online: 08 Jan 2016

References

  • D. Risanti, J. Deges, L. Falat, S. Kobayashi, J. Konrad, M. Palm, B. Pöter, A. Schneider, C. Stallybrass and F. Stein, Dependence of the brittle-to-ductile transition temperature (BDTT) on the Al content of Fe--Al alloys. Intermetallics 13 (2005), pp. 1337–1342.
  • J. Herrmann, G. Inden and G. Sauthoff, Deformation behaviour of iron-rich iron-aluminium alloys at high temperatures. Acta Mater. 51 (2003), pp. 3233–3242.
  • R. Prescott and M.J. Graham, The oxidation of iron-aluminum alloys. Oxid. Met. 38 (1992), pp. 73–87.
  • P. Tomaszewicz and G.R. Wallwork, Iron--Aluminum alloys: a review of their oxidation behavior. Rev. High Temp. Mater. 4 (1978), pp. 75–105.
  • E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson and L. Vitos, Third element effect in the surface zone of Fe--Cr--Al alloys. Phys. Rev. B 81 (Jan 2010), pp. 033105-1–033105-4.
  • M.H. Heinonen, K. Kokko, M.P.J. Punkkinen, E. Nurmi, J. Kollár and L. Vitos, Initial oxidation of Fe--Al and Fe--Cr--Al alloys: Cr as an Alumina booster. Oxid. Met. 76 (2011), pp. 331–346.
  • E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson and L. Vitos, High temperature oxidation of Fe-Al and Fe--Cr--Al alloys: the role of Cr as a chemically active element. Corros. Sci. 52 (2010), pp. 3394–3404.
  • D. Raabe, J. Keichel and G. Gottstein, Investigation of crystallographic slip in polycrystalline Fe3Al using slip trace measurement and microtexture determination. Acta Mater. 45 (1997), pp. 2839-2849.
  • D. Rohrberg, K.-H. Spitzer, L. Dörrer, A.J. Kulińska, G. Borchardt, A. Fraczkiewicz, T. Markus, M.H.G. Jacobs and R. Schmid-Fetzer, Host atom diffusion in ternary Fe--Cr--Al alloys. Metall. Mater. Trans. A 45 (2014), pp. 269–279.
  • M. Palm, Concepts derived from phase diagram studies for the strengthening of Fe--Al-based alloys. Intermetallics 13 (2005), pp. 1286–1295.
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. Ser. 7 (1954), pp. 823–843.
  • D. Nguyen-Manh, M. Mrovec and S.P. Fitzgerald, Dislocation driven problems in atomistic modelling of materials. Mater. Trans. 49 (2008), pp. 2497–2506.
  • H. Wang, Z.D. Zhang, R.Q. Wu and L.Z. Sun, Large-scale first-principles determination of anisotropic mechanical properties of magnetostrictive Fe--Ga alloys. Acta Mater. 61 (2013), pp. 2919–2925.
  • A. Sekkal, A. Benzair, T. Ouahrani, H.I. Faraoun, G. Merad, H. Aourag and C. Esling, Mechanical properties and bonding feature of the YAg, CeAg, HoCu, LaAg, LaZn, and LaMg rare-earth intermetallic compounds: An ab initio study. Intermetallics 45 (2014), pp. 65–70.
  • A.V. Ponomareva, E.I. Isaev, Y.K. Vekilov and I.A. Abrikosov, Site preference and effect of alloying on elastic properties of ternary B3NiAl-based alloys. Phys. Rev. B 85 (2012), pp. 144117-1–144117-10.
  • H. Niu, X.-Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li and Y. Li, Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion. Sci. Rep. 2 (2012), article number 718.
  • X. Li, H. Zhang, S. Lu, W. Li, J. Zhao, B. Johansson and L. Vitos, Elastic properties of vanadium-based alloys from first-principles theory. Phys. Rev. B 86 (2012), pp. 014105-1–014105-12.
  • W.A. Counts, M. Friák, D. Raabe and J. Neugebauer, Ab Initio guided design of bcc ternary Mg-Li-X (X = Ca, Al, Si, Zn, Cu) alloys for ultra-lightweight applications. Adv. Eng. Mater. 12 (2010), pp. 572–576.
  • M.A. Caravaca, J.C. Miño, V.J. Pérez, R.A. Casali and C.A. Ponce, Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure. J. Phys.: Condens. Matter 21 (2009), pp. 015501.
  • B.R. Hang, Z. Jia, X.Z. Duan and X.Z. Yang, Elastic properties, mechanical stability, and state densities of Aluminnides. Acta Phys. Pol. 123 (2013), pp. 668–672.
  • H.L. Zhang, G. Wang, M.P.J. Punkkinen, S. Hertzman, B. Johansson and L. Vitos, Elastic anomalies in Fe--Cr alloys. J. Phys.: Condens. Matter 25 (2013), pp. 195501.
  • M. Zhang, H. Yan, Q. Wei and H. Wang, Mechanical and electronic properties of novel tungsten nitride. Europhys. Lett. 100 (2012), p. 46001.
  • D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8 (1992), pp. 345–349.
  • D. Nguyen-Manh, V. Vitek and A.P. Horsfield, Environmental dependence of bonding: A challenge for modelling of intermetallics and fusion materials. Prog. Mater. Sci. 52 (2007), pp. 255–298.
  • W.A. Counts, M. Friák, D. Raabe and J. Neugebauer, Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications. Acta Mater. 57 (2009), pp. 69–76.
  • D. Raabe, J. Keichel and Z. Sun, Microstructure and crystallographic texture of rolled polycrystalline Fe3Al. J. Mater. Sci. 31 (1996), pp. 339–344.
  • D. Raabe and W. Mao, Experimental investigation and simulation of the texture evolution during rolling deformation of an intermetallic Fe-28 at.% A1-2 at.% Cr polycrystal at elevated temperatures. Philos. Mag. A 71 (1995), pp. 805–813.
  • S. Spindler, R. Wittmann, D. Gerthsen, J. Lange, M. Brede and J. Klöwer, Dislocation properties of polycrystalline Fe--Cr--Al alloys and their correlation with mechanical properties. Mater. Sci. Eng., A 289 (2000), pp. 151–161.
  • S. Kobayashi, C. Zambaldi and D. Raabe, Orientation dependence of local lattice rotations at precipitates: Example of κ-Fe3AlC carbides in a Fe3Al-based alloy. Acta Mater. 58 (2010), pp. 6672–6684.
  • S. Kobayashi, S. Zaefferer, A. Schneider, D. Raabe and G. Frommeyer, Optimisation of precipitation for controlling recrystallisation of wrought Fe3Al based alloys. Intermetallics 13 (2005), pp. 1296–1303.
  • J. Konrad, S. Zaefferer and D. Raabe, Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater. 54 (2006), pp. 1369–1380.
  • P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136 (1964), pp. B864–B871.
  • W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140 (1965), pp. A1133–A11338.
  • L. Vitos, I.A. Abrikosov and B. Johansson, Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87 (2001), pp. 156401-1–156401-4.
  • L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Engineering Materials and Processes Series. Springer-Verlag, London, 2007.
  • J.N. Andersen, D. Hennig, E. Lundgren, M. Methfessel, R. Nyholm and M. Scheffler, Surface core-level shifts of some 4d-metal single-crystal surfaces: experiments and ab initio calculations. Phys. Rev. B 50 (1994), pp. 17525–17533.
  • O.K. Andersen, O. Jepsen and G. Krier, Exact muffin-tin orbital theory, in Lectures on Methods of Electronic Structure Calculations, V. Kumar, O.K. Andersen and A. Mookerjee, eds., World Scientific Publishing, Singapore, 1994, p. 63.
  • L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B 64 (2001), pp. 014107-1–014107-11.
  • L. Vitos, H.L. Skriver, B. Johansson and J. Kollár, Application of the exact muffin-tin orbitals theory: the spherical cell approximation. Comp. Mat. Sci. 18 (2000), pp. 24–38.
  • M. Zwierzycki and O.K. Andersen, The Overlapping Muffin-Tin Approximation. Acta Phys. Pol. A 115 (2009), pp. 64–68.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • V.L. Moruzzi, J.F. Janak and K. Schwarz, Calculated thermal properties of metals. Phys. Rev. B 37 (1988), pp. 790–799.
  • I.A. Abrikosov, A.V. Ruban, D. Ya Kats and Y.H. Vekilov, Electronic structure, thermodynamic and thermal properties of Ni-Al disordered alloys from LMTO-CPA-DFT calculations. J. Phys.: Condens. Matter 5 (1993), pp. 1271–1290.
  • H.L. Zhang, S. Lu, M.P.J. Punkkinen, Q.-M. Hu, B. Johansson and L. Vitos, Static equation of state of bcc iron. Phys. Rev. B 82 (2010), pp. 132409-1–132409-4.
  • H.L. Zhang, M.P.J. Punkkinen, B. Johansson, S. Hertzman and L. Vitos, Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory. Phys. Rev. B 81 (2010), pp. 184105-1–184105-14.
  • H.L. Zhang, B. Johansson and L. Vitos, Ab initio calculations of elastic properties of bcc Fe--Mg and Fe--Cr random alloys. Phys. Rev. B 79 (2009), pp. 224201-1–224201-10.
  • H.J. Leamy, E.D. Gibson and F.X. Kayser, The elastic stiffness coefficients of iron-aluminum alloys - experimental results and thermodynamic analysis. Acta Metall. 15 (1967), pp. 1827–1838.
  • W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Belfast, 1958, p. 533.
  • W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Belfast, 1958, p. 344.
  • B. Predel (ed.), Landolt-Börnstein -- Group IV, Physical Chemistry, New Series IV/12A, Supplement to IV/5A. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Springer, Berlin Heidelberg, 2006, p. 4.
  • G.R. Speich, A.J. Schwoeble and W.C. Leslie, Elastic constants of binary iron-base alloys. Metall. Trans. 3 (1972), pp. 2031–2037.
  • H.L. Zhang, M.P.J. Punkkinen, B. Johansson and L. Vitos, Theoretical elastic moduli of ferromagnetic bcc Fe alloys. J. Phys.: Condens. Matter 22 (2010), p. 275402.
  • H. Zhang, G. Wang, M.P.J. Punkkinen, S. Hertzman, B. Johansson and L. Vitos, Elastic anomalies in Fe--Cr alloys. J. Phys.: Condens. Matter 25 (2013), p. 195501.
  • R. Kuentzler, Ordering effects in the Fe--Al system. J. Phys. Fr. 44 (1983), pp. 1167–1178.
  • R.K. Shiue, S.K. Wu and Y.L. Lee, Transient microstructural evolution of infrared brazed Fe3Al intermetallics using aluminum foil. Intermetallics 13 (2005), pp. 818–826.
  • R. Hultgren, P.D. Desai, D.T. Haekins, M. Gleiser and K.K. Kelley, Selected values of thermodynamic properties of binary alloys, American Society for Metal, Metals Park, OH, 1973.
  • J. Huang, J. Sun, H. Xing and Y.F. Wen, Magnetism-induced ductility in NiAl intermetallic alloys with Fe additions: Theory and experiment. J. Alloys Compd. 519 (2012), pp. 101–105.
  • P. Lazar and R. Podloucky, Ductility and magnetism: an ab-initio study of NiAl-Fe and NiAl-Mn alloys. Intermetallics 17 (2009), pp. 675–679.
  • G. Wang, S. Schönecker, S. Hertzman, Q.-M. Hu, B. Johansson, S.K. Kwon and L. Vitos, Ab initio prediction of the mechanical properties of alloys: The case of Ni/Mn-doped ferromagnetic Fe. Phys. Rev. B 91 (2015), pp. 224203-1–224203-13.
  • J.R. Rice, Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids 40 (1992), pp. 239–271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.