1,073
Views
38
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Bi2Se3 under pressure

, , &
Pages 208-222 | Received 08 Jun 2015, Accepted 30 Nov 2015, Published online: 20 Jan 2016

References

  • M. Brahlek and Y.S. Kim, Surface versus bulk state in topological insulator Bi2Se3 under environmental disorder, Appl. Phys. Lett. 99 (2011) p.012109–012111. 10.1063/1.3607484
  • P. Janíček, Č. Drašar, L. Beneš and P. Lošťák, Thermoelectric properties of Tl-doped Bi2Se3 single crystals, Cryst. Res. Technol. 44 (2009) p.505–510. 10.1002/crat.v44:5
  • S. Urazhdin, D. Bilc, S.D. Mahanti, S.H. Tessmer, T. Kyratsi and M.G. Kanatzidis, Surface effects in layered semiconductors Bi2Se3 and Bi2Te3, Phys. Rev. B 69 (2004) p.085313–085319. 10.1103/PhysRevB.69.085313
  • R. Xu, A. Husmann, T.F. Rosenbaum, M.L. Saboungi, J.E. Enderby and P.B. Littlewood, Large magnetoresistance in non-magnetic silver chalcogenides, Nature 390 (1997) p.57–60.
  • D.D. Thornburg, Memory switching in a type I amorphous chalcogenide, J. Electron. Mater. 2 (1973) p.3–15. 10.1007/BF02658101
  • K. Nakayama, T. Kitagawa, M. Ohmura and M. Suzuki, Nonvolatile memory based on phase transition in chalcogenide thin film, Jpn. J. Appl. Phys. 32 (1993) p.564–569. 10.1143/JJAP.32.564
  • H.J. Stocker, Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, Appl. Phys. Lett. 15 (1969) p.55–57. 10.1063/1.1652900
  • T. Kyratsi, K. Chrissafis, J. Wachter, K.M. Paraskevopoulos and M.G. Kanatzidis, KSb5S8: A wide bandgap phase-change material for ultra high density rewritable information storage, Adv. Mater. 15 (2003) p.1428–1431. 10.1002/(ISSN)1521-4095
  • T.P. Debies and J.W. Rabalais, X-ray photoelectron spectra and electronic structure of Bi2X3 (X = O, S, Se, Te), Chem. Phys. 20 (1977) p.277–283. 10.1016/0301-0104(77)85033-7
  • Y. Ueda, A. Furuta, H. Okuda, M. Nakataka, H. Sato, H. Namatame and M. Taniguchi, Photoemission and inverse-photoemission studies of Bi2Y3 (Y=S, Se, Te) semiconductors, J. El. Spec. 677 (1999) p.101–103.
  • S.K. Mishra, S. Satpathy and O. Jepsen, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide, J. Phys.: Condens. Matter 9 (1997) p.461–470.
  • R. Caracas and X. Gonze, First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se, Phys. Chem. Miner. 32 (2005) p.295–300. 10.1007/s00269-005-0470-y
  • M.S. Christian, S.R. Whittleton and E.R. Johnson, Chemical bonding and surface interactions in Bi2Se3 and Bi4Se3, Comput. Theor. Chem. 1053 (2015) p.238–244. 10.1016/j.comptc.2014.09.023
  • A.A. Taskin, S. Sasaki and K. Segawa, Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films, Phys. Rev. Lett. 109 (2012) p.066803–066807. 10.1103/PhysRevLett.109.066803
  • C.Y. Li, A.L. Ruoff and C.W. Spencer, Effect of Pressure on the Energy Gap of BiTe3, J. Appl. Phys. 32 (1961) p.1733–1735. 10.1063/1.1728426
  • L.F. Vereshchagin, E.Y. Atabaeva and N.A. Bendeliani, Investigation of the Bi2Te3 phase diagram at high temperatures and pressures, Sov. Phys. Solid State 13 (1972) p.2051–2053.
  • A.A. Averkin, O.S. Gryaznov and Y.Z. Sanfirov, Influence of hydrostatic pressure on galvanothermomagnetic properties of n-Type bismuth telluride, Sov. Phys. Semicond. 12 (1978) p.1358–1359.
  • L.G. Khvostantsev, A.I. Orlov, N.K. Abrikosov and L.D. Ivanova, Thermoelectric properties and phase transition in Sb,Te, under hydrostatic pressure up to 9 GPa, Phys. Status Solidi A 58 (1980) p.37–40. 10.1002/(ISSN)1521-396X
  • D.A. Polvani, J.F. Meng, N.V. Chandra Shekar, J. Sharp and J.V. Badding, Large improvement in thermoelectric properties in pressure-tuned p-Type Sb1.5Bi0.5Te3, J. Sharp and J. V. Badding, Chem. Mater. 13 (2001) p.2068–2071. 10.1021/cm000888q
  • N.V. Chandra Shekar, D.A. Polvani, J.F. Meng and J.V. Badding, Improved thermoelectric properties due to electronic topological transition under high pressure, Physica B 358 (2005) p.14–18.
  • P. Larson, Effects of uniaxial and hydrostatic pressure on the valence band maximum in Sb2Te3: an electronic structure study, Phys. Rev. B 74 (2006) p.205113–205118. 10.1103/PhysRevB.74.205113
  • R. Vilaplana, O. Gomis, F.J. Manjon, A. Segura, E. PerezGonzalez, P. Rodrguez-Hernandez, A. Munoz, J. Gonzalez, V. Marın-Borras, V. Munoz-Sanjose, C. Drasar and V. Kucek, Structural and vibrational study of Bi2Se3 under high pressure, Phys. Rev. B 84 (2011) p.184110–184124. 10.1103/PhysRevB.84.184110
  • M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) p.1045–1097. 10.1103/RevModPhys.64.1045
  • V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya and R.H. Nobes, Electronic, structure, properties, and phase stability of inorganic crystals: A Pseudopotential Plane-Wave study, Int. J. Quantum Chem. 77 (2000) p.895–910. 10.1002/(ISSN)1097-461X
  • Z. Wu and R.E. Cohen, More accurate generalized gradient approximation for solids, Phys. Rev. B 73 (2006) p.235116–235121. 10.1103/PhysRevB.73.235116
  • S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980) p.1200–1211. 10.1139/p80-159
  • H.J. Monkhorst and J.D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13 (1976) p.5188–5192. 10.1103/PhysRevB.13.5188
  • S. Nakajima, The crystal structure of Bi2Te3−xSex, J. Phys. Chem. Solids 24 (1963) p.479–485. 10.1016/0022-3697(63)90207-5
  • R.W.G. Wyckoff, Crystal Structures, Vol. 2, Wiley, New York, 1964.
  • B.T. Wang and P. Zhang, Phonon spectrum and bonding properties of Bi2Se3: Role of strong spin-orbit interaction, Appl. Phys. Lett. 100 (2012) p.082109–082113. 10.1063/1.3689759
  • S.M. Young, S. Chowdhury, E.J. Walter, E.J. Mele, C.L. Kane and A.M. Rappe, Spectral function tour of electron-phonon coupling outside the migdal limit, Phys. Rev. B 84 (2011) p.085126–085139.
  • Y.H. Zhao, Y.B. Hu, L. Liu, Y. Zhu and H. Guo, Helical states of topological insulator Bi2Se3, Nano Lett. 11 (2011) p.2088–2091. 10.1021/nl200584f
  • G.V. Sin’ko and N.A. Smirnov, Relative stability and elastic properties of hcp, bcc, and fcc beryllium under pressure, Phys. Rev. B 71 (2005) p.214108–214114.
  • G.V. Sin’ko and N.A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.: Condens. Matter 14 (2002) p.6989–7005.
  • D.M. Teter, Computational alchemy: the search for new superhard materials, MRS Bull. 23 (1998) p.22–27. 10.1557/S0883769400031420
  • J.P. Watt, Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry, J. Appl. Phys. 51 (1980) p.1520–1524. 10.1063/1.327803
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London, Sect. A 65 (1952) p.349–354. 10.1088/0370-1298/65/5/307
  • S.S. Hong, W. Kundhikanjana, J.J. Cha, K. Lai, D.S. Kong, S. Meister, M.A. Kelly, Z.X. Shen and Y. Cui, Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy, Nano Lett. 10 (2010) p.3118–3122. 10.1021/nl101884h
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) p.823–843. 10.1080/14786440808520496
  • F. Chu, Y. He, D.J. Thoma and T.E. Mitchell, Elastic constants of the Cl5 laws phase compound NbCr, Scr. Metall. Mater. 33 (1995) p.1295–1300. 10.1016/0956-716X(95)00357-2
  • K.B. Panda and K.S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci. 35 (2006) p.134–150. 10.1016/j.commatsci.2005.03.012
  • H. Neumamn, High temperature arsenic doping of CdHgTe epitaxial layers, Cryst. Res. Technol. 39 (2004) p.11–22.
  • O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963) p.909–917. 10.1016/0022-3697(63)90067-2
  • Y.J. Hao, X.R. Chen, H.L. Cui and Y.L. Bai, First-principles calculations of elastic constants of c-BN, Physica B 382 (2006) p.118–122. 10.1016/j.physb.2006.02.005
  • X.F. Li, G.F. Ji, F. Zhao, X.R. Chen and D. Alfe, First-principles calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter 21 (2009) p.025505–025511.
  • Z.L. Lv, C. Cheng, Y. Cheng, X.R. Chen and G.F. Ji, Elastic, thermodynamic and electronic properties of LaF3 under pressure from first principles, Comput. Mater. Sci. 89 (2014) p.57–64. 10.1016/j.commatsci.2014.03.011
  • T. Zhang, Z.L. Lv, Y. Cheng, X.R. Chen and G.F. Ji, Elastic and electronic properties of MnTi2O4 under pressure: A first-principle study, Comput. Mater. Sci. 84 (2014) p.156–162. 10.1016/j.commatsci.2013.12.017
  • G.E. Shoemake, J.A. Rayne and R.W.J. Ure, Specific heat of n- and p-Type Bi,Tes from 1.4 to 90'K, Phys. Rev. 185 (1969) p.1046–1056. 10.1103/PhysRev.185.1046
  • S. Urazhdin, D. Bilc, S.D. Mahanti, S.H. Tessmer, T. Kyratsi and M.G. Kanatzidis, Surface effects in layered semiconductors Bi2Se3 and Bi2Te3, Phys. Rev. B 69 (2004) p.085313–085319. 10.1103/PhysRevB.69.085313
  • P. Debye, Zur theorie der spezifischen wärmen, Ann. Phys. 344 (1912) p.789–839. 10.1002/(ISSN)1521-3889
  • A. Einstein, Über die Möglichkeit einer neuen Prüfung des Relativitätsprinzips, Ann. Phys. 328 (1907) p.197–198. 10.1002/(ISSN)1521-3889
  • V.P. Vassiliev, W. Gong, A.F. Taldrik and S.A. Kulinich, Method of the correlative optimization of heat capacities of isostructural compounds, J. Alloys Compd. 552 (2013) p.248–254. 10.1016/j.jallcom.2012.10.075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.