486
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A disclination model for twinning and de-twinning of nanotwinned copper

, , , , , & show all
Pages 301-309 | Received 24 Aug 2015, Accepted 10 Dec 2015, Published online: 15 Jan 2016

References

  • L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009), pp.607–610.10.1126/science.1167641
  • G.Y. Wang, G.Y. Li, L. Zhao, J.S. Lian, Z.H. Jiang, and Q. Jiang, The origin of the ultrahigh strength and good ductility in nanotwinned copper, Mat. Sci. Eng. A 527 (2010), pp.4270–4274.10.1016/j.msea.2010.03.076
  • Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz, Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals, Acta Mater. 57 (2009), pp.4508–4518.10.1016/j.actamat.2009.06.015
  • Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn, Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centred cubic metals, Acta Mater. 56 (2008), pp.1126–1135.10.1016/j.actamat.2007.11.020
  • X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464 (2010), pp.877–880.10.1038/nature08929
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49 (2001), pp.4025–4039.10.1016/S1359-6454(01)00300-7
  • Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, and E.J. Lavernia, Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation, J. Appl. Phys. 98 (2005), pp.034319-1–034319-8.10.1063/1.2006974
  • Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, F. Zhou, and E.J. Lavernia, Nucleation and growth of deformation twins in nanocrystalline aluminum, Appl. Phys. Lett. 85 (2004), pp.5049–5051.10.1063/1.1823042
  • L. Capolungo and I.J. Beyerlein, Nucleation and stability of twins in hcp metals, Phys. Rev. B 78 (2008), pp.024117-1–024117-19.10.1103/PhysRevB.78.024117
  • I.J. Beyerlein and C.N. Tome, A probabilistic twin nucleation model for HCP polycrystalline metals, Proc. R. Soc. A 466 (2010), pp.2517–2544.10.1098/rspa.2009.0661
  • R. Stephen, A. Niezgoda, K. Kanjarla, I.J. Beyerlein, and C.N. Tome, Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals, Int. J. Plast. 56 (2014), pp.119–138.
  • E.I. Galindo-Nava, Modelling twinning evolution during plastic deformation in hexagonal close-packed metals, Mater. Des. 83 (2015), pp.327–343.
  • E.I. Galindo-Nava and P.E.J. Rivera-Diaz-del-Castillo, Thermostastitical modelling of deformation twinning in HCP metals, Int. J. Plast. 55 (2014), pp.25–42.10.1016/j.ijplas.2013.09.006
  • J.H. Cheng and S. Ghosh, A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys, Int. J. Plast. 67 (2015), pp.148–170.10.1016/j.ijplas.2014.10.005
  • A. Fernandez, M.T.P. Prado, Y.J. Wei, and A. Jerusalem, Continuum modeling of the response of a Mg alloy AZ31 rolled sheet during uniaxial deformation, Int. J. Plast. 27 (2011), pp.1739–1757.10.1016/j.ijplas.2011.05.002
  • T. Zhu and H.J. Gao, Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling, Scr. Mater. 66 (2012), pp.843–848.10.1016/j.scriptamat.2012.01.031
  • Y.J. Wei, The kinetics and energetics of dislocation mediated de-twinning in nano-twinned face-centered cubic metals, Mater. Sci. Eng. A 528 (2011), pp.1558–1566.10.1016/j.msea.2010.10.072
  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. A 243 (1956), pp.376–396.
  • A.N. Pertsev, A.E. Romanov, and V.I. Vladimirov, Disclination-dislocation model for the kink bands in polymers and fibre composites, J. Mater. Sci. 16 (1981), pp.2084–2090.10.1007/BF00542368
  • G.V. Berezhkova, P.P. Perstnev, A.E. Romanov, and V.I. Vladimirov, Peculiarities of reoriented bands formation in crystals, Cryst. Res. Technol. 18 (1983), pp.139–147.10.1002/(ISSN)1521-4079
  • A.L. Kolesnikova, A.E. Ovid’ko, and A.E. Romanov, Dislocation-disclination transformations and the reverse Hall-Petch effect in nanocrystalline materials, Tech. Phys. Lett. 33 (2007), pp.641–644.10.1134/S1063785007080056
  • A.E. Romanov, A.L. Kolesnikova, I.A. Ovid’ko, and E.C. Aifantis, Disclinations in nanocrystalline materials: Manifestation of the relay mechanism of plastic deformation, Mater. Sci. Eng. A 503 (2009), pp.62–67.10.1016/j.msea.2008.05.053
  • I.A. Ovid’ko, A.G. Sheinerman and E.C. Aifantis, Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59 (2011), pp.5023–5031.
  • I.A. Ovid’ko and A.G. Sheinerman, Special strain hardening mechanism and nanocrack generation in nanocrystalline materials, Appl. Phys. Lett. 90 (2007), pp.171927-1–171927-3.
  • S.V. Bobylev, N.F. Morozov, and I.A. Ovid’ko, Cooperative grain boundary sliding and migration process in nanocrystalline solids, Phys. Rev. Lett. 105 (2010), pp.055504-1–055504-4.10.1103/PhysRevLett.105.055504
  • N.F. Morozo, I.A. Ovid’ko, A.G. Sheinerman, and E.C. Aifantis, Special rotational deformation as a toughening mechanism in nanocrystalline solids, J. Mech. Phys. Solids 58 (2010), pp.1088–1099.10.1016/j.jmps.2010.04.003
  • P. Müllner and A.E. Romanov, Modeling internal twinning in terms of disclinations and Somigliana dislocations, Solid State Phenom. 87 (2002), pp.239–244.10.4028/www.scientific.net/SSP.87
  • P. Müllner and P. Pirouz, A disclination model for the twin-twin intersection and the formation of diamond-hexagonal silicon and germanium, Mater. Sci. Eng. A 233 (1997), pp.139–144.10.1016/S0921-5093(97)00058-0
  • A.E. Romanov and V.I. Vladimirov, in Disclinations in Crystalline Solids, F.R.N. Nabarro, ed., Elsevier, Amsterdam, 1992.
  • A.E. Romanov and A.L. Kolesnikova, Application of disclination concept to solid structures, Prog. Mater. Sci. 54 (2009), pp.740–769.10.1016/j.pmatsci.2009.03.002
  • V. Klemm, P. Klimanek, and M. Seefeldt, A microdiffraction method for the characterization of partial disclinations in plastically deformed metals by TEM, Phys. Status Solidi A 175 (1999), pp.569–576.10.1002/(ISSN)1521-396X
  • V. Klemm, P. Klimanek, and M. Motylenko, Transmission electron microscopy analysis of disclination structures in plastically deformed metals, Mater. Sci. Eng. A 324 (2001), pp.174–178.
  • V. Klemm, P. Klimanek, and M. Motylenko, TEM identification of disclinations in plastically deformed crystals, Solid State Phenom. 87 (2002), pp.57–72.10.4028/www.scientific.net/SSP.87
  • P. Müllner and A.E. Romanov, Between dislocation and disclination models for twins, Scr. Metal. Mater. 31 (1994), pp.1657–1662.10.1016/0956-716X(94)90459-6
  • N.F. Morozov, I.A. Ovid’ko, and N.V. Skiba, Plastic flow through widening of nanoscale twins in ultrafine-grained metallic materials with nanotwinned structures, Rev. Adv. Mater. Sci. 37 (2014), pp.29–36.
  • I.A. Ovid’ko and N.V. Skiba, Generation of nanoscale deformation twins at locally distorted grain boundaries in nanomaterials, Int. J. Plast., 62 (2014), pp.50–71.
  • I.A. Ovid’ko and N.V. Skiba, Nanotwins induced by grain boundary deformation processes in nanomaterials, Scr. Mater. 71 (2014), pp.33–36.
  • N.F. Morozov, I.A. Ovid’ko, A.G. Sheinerman, and N.V. Skiba, Formation of deformation twins through ideal nanoshear events near crack tips in deformed nanocrystalline materials, Rev. Adv. Mater. Sci. 32 (2012), pp.75–81.
  • M.Y. Gutkin and I.A. Ovid’ko, Crack-stimulated generation of deformation twins in nanocrystalline metals and ceramics, Philos. Mag. 88 (2008), pp.1137–1151.
  • M.Y. Gutkin, I.A. Ovid’ko, and N.V. Skiba, Mechanism of deformation-twin formation in nanocrystalline metals, Phys. Solid State 49 (2007), pp.874–882.10.1134/S1063783407050125
  • M.Y. Gutkin, I.A. Ovid’ko, and N.V. Skiba, Generation of deformation twins in nanocrystalline metals: theoretical model, Phys. Rev. B 74 (2006), pp.172107-1–172107-4.10.1103/PhysRevB.74.172107
  • V.V. Novozhilov, On the physical meaning of stress invariants used in the theory of plasticity, Appl. Math. Mech. 16 (1952), pp.617–619.
  • C. Xie, Q.H. Fang, L.X. Li, J.K. Chen, Y.W. Liu, and Y.N. Wang, The impact of twin lamella thickness distribution on strength and endurance limit in nanotwinned copper, Mech. Mater. 84 (2015), pp.91–99.10.1016/j.mechmat.2015.01.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.