404
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Yield strength temperature dependence of tungsten nanosized crystals: experiment and simulation

, , , , &
Pages 473-485 | Received 18 May 2015, Accepted 21 Dec 2015, Published online: 06 Feb 2016

References

  • E. Rabkin, H.-S. Nam, and D.J. Srolovitz, Atomistic simulation of the deformation of gold nanopillars, Acta Mater. 55 (2007), p. 2085–2099.10.1016/j.actamat.2006.10.058
  • A.R. Setoodeh, H. Attariani, and M. Khosrownejad, Nickel nanowires under uniaxial loads: A molecular dynamics simulation study, Comput. Mater. Sci. 44 (2008), p. 378–384.10.1016/j.commatsci.2008.03.035
  • H.A. Wu, Molecular dynamics study on mechanics of metal nanowire, Mech. Res. Commun. 33 (2006), p. 9–16.10.1016/j.mechrescom.2005.05.012
  • S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, and J. Babu, Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires, Phys. Rev. B 76 (2007), p. 134117-1–134117-13.
  • S.W. Lee, Y.T. Cheng, I. Ryu, and J.R. Greer, Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments, Tech. Sci. 57 (2014), p. 652–662.
  • C.R. Weinberger and W. Cai, Plasticity of metal nanowires, J. Mater. Chem. 22 (2012), p. 3277–3292.10.1039/c2jm13682a
  • J. Lao, M.N. Tam, D. Pinisetty, and N. Gupta, Molecular Dynamics Simulation of FCC Metallic Nanowires, JOM 65 (2013), p. 1–6.
  • S. Kotrechko, O. Filatov, and O. Ovsjannikov, Peculiarities of plastic deformation and failure of nanoparticles of b.c.c. transition metals, Mater. Sci. Forum 567–568 (2008), p. 65–68.10.4028/www.scientific.net/MSF.567-568
  • S. Kotrechko and A. Ovsjannikov, Temperature Dependence of the Yield Stress of Metallic Nano-size Crystals, Philos. Mag. 89 (2009), p. 3049–3058.10.1080/14786430903179554
  • A.S. Bakai, A.P. Shpak, N. Wanderka, S. Kotrechko, T.I. Mazilova, and I.M. Mikhailovskij, Inherent strength of zirconium-based bulk metallic glass, J. Non-Cryst. Solids 356 (2010), p. 1310–1314.
  • A.P. Shpak, S.O. Kotrechko, T.I. Mazilova, and I.G. Mikhailovskij, Inherent tensile strength of molybdenum nanocrystals, Sci. Technol. Adv. Mater. 10 (2009), p. 045004–045012.
  • T.I. Mazilova, V.A. Ksenofontov, V.N. Voyevodin, E.V. Sadanov, and I.M. Mikhailovskij, Mechanical recrystallization of ultra-strength tungsten nanoneedles, Philos. Mag. Lett. 91 (2011), p. 304–312.10.1080/09500839.2011.559178
  • M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith, Atom-Probe Field Ion Microscopy, Oxford University, Oxford, 1996.
  • E.F. Talantsev, The tensile strength of perfect LuBa2Cu3O7-x single crystals of submicrometre cross-sectional dimensions, Supercond. Sci. Technol. 7 (1994), p. 491–494.10.1088/0953-2048/7/7/008
  • I.M. Mikhailovskij, T.I. Mazilova, V.N. Voyevodin, and A.A. Mazilov, Inherent strength of grain boundaries in tungsten, Phys. Rev. B 83 (2011), p. 134115–134121.10.1103/PhysRevB.83.134115
  • G.J. Ackland and R. Thetford, An Improved N-Body Semiempirical Model for Body-Centered Cubic Transition-Metals, Philos. Mag. A 56 (1987), p. 15–30.10.1080/01418618708204464
  • P. Wang, W. Chou, A. Nie, Y. Huang, H. Yao, and H. Wang, Molecular dynamics simulation on deformation mechanisms in body-centered-cubic molybdenum nanowires, J. Appl. Phys. 110 (2011), p. 093521–093528.10.1063/1.3660251
  • S. Kotrechko, A. Timoshevskij, S. Yablonovskii, I. Mikhailovskij, T. Mazilova, and V. Lidych, The Absolute Upper Limit of Material Strength and Ways to Reach it, Proc. Mat. Sci. 3 (2014), p. 391–396.10.1016/j.mspro.2014.06.066
  • G. Sainath and B.K. Choudhary, Molecular dynamics simulations on size dependent tensile deformation behaviour of [110] oriented body centred cubic iron nanowires, Mat. Sci. Eng. A 640 (2015), p. 98–105.10.1016/j.msea.2015.05.084
  • H. Bei, S. Shim, G.M. Pharr, and E.P. George, Effects of Pre-strain on the Compressive Stress-Strain Response of Mo-alloy Single Crystal Micro-pillars, Acta Mater. 56 (2008), p. 4762–4770.10.1016/j.actamat.2008.05.030
  • H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr, Compressive Strengths of Molybdenum Alloy Micro-Pillars Prepared Using a New Technique, Scr. Mater. 57 (2007), p. 397–400.10.1016/j.scriptamat.2007.05.010
  • J. Lao, M.N. Tam, D. Pinisetty, and N. Gupta, Molecular Dynamics Simulation of FCC Metallic Nanowires, JOM 65 (2013), p. 175–184.
  • T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation, Phys. Rev. Lett. 100 (2008), p. 025502-1–025502-4.10.1103/PhysRevLett.100.025502
  • S. Ryu, K. Kang, and W. Cai, Predicting the dislocation nucleation rate as a function of temperature and stress, J. Mat. Res. 26 (2011), p. 2335–2354.10.1557/jmr.2011.275
  • P. Hänggi, P. Talkner, and M. Borkovec, Reaction Rate Theory: Fifty Years After Kramers, Rev. Mod. Phys. 62 (1990), p. 251–342.10.1103/RevModPhys.62.251
  • J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic simulations of the yielding of gold nanowires, Acta Mater. 54 (2006), p. 643–653.10.1016/j.actamat.2005.10.008
  • S. Kotrechko, I. Mikhailovskij, T. Mazilova, and O. Ovsjannikov, Strength hierarchy for nano-sized crystals, Key Eng. Mat. 592–593 (2014), p. 301–306.
  • J.A. Reisland, The Physics of Phonons, Wiley, London, 1973.
  • http://www.knowledgedoor.com/2/elements_handbook/tungsten.html.
  • G. Leibfried, Gittertherie der mechanischer und thermischen eigenschaften der kristalle, Handbuch der physic, Band VII Teil 2, Springer-Verlag, Berlin, 1955.
  • K. Sadaiyandi, Size dependent Debay temperature and mean square displacements of nanocrystalline Au, Ag and Al,, Mat. Chem. Phys. 115 (2009), p. 703–706.10.1016/j.matchemphys.2009.02.008
  • L. Proville, D. Rodney, and M.C. Marinica, Quantum effect in thermally activated glide of dislocations, Nat. Mater. 11 (2012), p. 845–849.10.1038/nmat3401

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.