185
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theoretical study of thermoelectric properties of n-type doped Mg2Si0.4Sn0.6 solid solutions

Pages 560-575 | Received 08 Jun 2015, Accepted 13 Jan 2016, Published online: 04 Mar 2016

References

  • D.M. Rowe, Thermoelectrics Handbook, Taylor and Francis Group, London, 2006.
  • R.R. Heikes and R.W. Ure, Thermoelectricity, Science and Engineering, Interscience Publishers, New York, 1961.
  • T.M. Tritt, Recent Trends in Thermoelectric Materials Research I, Academic Press, San Diego, 2001.
  • H.J. Goldsmid, Introduction to Thermoelectricity, Springer Verlag, Berlin, 2010.
  • A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Ltd., London, 1957.
  • M.B.A. Bashir, S.M. Said, M.F.M. Sabri, D.A. Shnawah, and M.H. Elsheikh, Recent advances on Mg2Si1 – xSnx materials for thermoelectric generation, Ren. Sust. Energy Rev. 37 (2014), p. 569–584.
  • R. Saravanana and M.C. Robert, Local structure of the thermoelectric material Mg2Si using XRD, J. Alloys Compd. 479 (2009), p. 26–31.
  • V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Highly effective Mg2Si1 – xSnx thermoelectrics, Phys. Rev. B. 74 (2006), p. 045207-1–045207-5.
  • W. Liu, X.J. Tan, K. Yin, H.J. Liu, X.F. Tang, J. Shi, Q.J. Zhang, and C. Uher, Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type Mg2Si1 – xSnx Solid Solutions, Phys. Rev. Lett. 108 (2012), p. 166601-1–166601-5.
  • A.U. Khan, N. Vlachos, and Th Kyratsi, High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb, Scripta Mater, 69 (2013), p. 606–609.
  • J. Tani and H. Kido, Thermoelectric properties of Bi-doped Mg2Si semiconductors, Physica B, 364 (2005), p. 218–224.
  • H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont, and H. Scherrer, Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga, J. Alloys Compd. 509 (2011), p. 6503–6508.
  • K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola, and H. Scherrer, Thermoelectric Properties and Electronic Structure of Bi- and Ag-Doped Mg2Si1 – xGex Compounds, J. Electron. Mater. 38 (2009), p. 1360–1364.
  • M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada,The thermoelectric properties of bulk crystalline n - and p -type Mg2Si prepared by the vertical Bridgman method, J. Appl. Phys. 104 (2008), p. 013703-1–013703-8.
  • H. Wang, W. Chu, and H. Jin, Theoretical study on thermoelectric properties of Mg2Si and comparison to experiments, Comput. Mater. Sci. 60 (2012), p. 224–230.
  • N. Satyala and D. Vashaee, Modeling of Thermoelectric Properties of Magnesium Silicide (Mg2Si), J. Electron. Mater. 41 (2012), p. 1785–1791.
  • X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, and C. Uher, Multiscale calculations of thermoelectric properties of n-Type Mg2Si1 – xSnx solid solutions, Phys. Rev. B 85 (2012), p. 205212-1–205212-10.
  • J.J. Pulikkotil, D.J. Singh, S. Auluck, M. Saravanan, D.K. Misra, A. Dhar, and R.C. Budhani, Doping and temperature dependence of thermoelectric properties in Mg2 (Si,Sn), Phys. Rev. B 86 (2012), p. 155204-1–155204-8.
  • K. Kutorasinski, J. Tobola, and S. Kaprzyk, Calculating electron transport coefficients of disordered alloys using the KKR-CPA method and Boltzmann approach: Application to Mg2Si1 – xSnx thermoelectrics, Phys. Rev. B 87 (2013), p. 195205-1–195205-9.
  • T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N.A. Katcho, A. Shakouri, N. Mingo, J.-P. Fleurial, N.D. Browning, and S.M. Kauzlarich, Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties, J. Mater. Chem. 22 (2012), p. 24805–24813.
  • J.-H. Bahk, Z. Bian, and A. Shakouri, Electron transport modeling and energy filtering for efficient thermoelectric Mg2Si1 – xSnx solid solutions, Phys. Rev. B 89 (2014), p. 075204-1–075204-13.
  • Ö.C. Yelgel and G.P. Srivastava, Thermoelectric properties of n-type Bi2(Te0.85Se0.15)3 single crystals doped with CuBr and SbI3, Phys. Rev. B 85 (2012), p. 125207-1–125207-11.
  • L.D. Hicks and M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B. 47 (1993), p. 12727-1–12727-5.
  • P.J. Price, Ambipolar thermodiffusion of electrons and holes in semiconductors, Phil. Mag. 46 (1955), p. 1252–1260.
  • G.P. Srivastava, The Physics of Phonons, Taylor and Francis Group, New York, 1990.
  • W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang and C. Uher, High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions, J. Solid State Chem. 203 (2013), p. 333–339.
  • J.P. McKelvey, Solid State and Semiconductor Physics, Harper and Row Publishers, New York, 1966.
  • D.M. Rowe and C.M. Bhandari, Modern Thermoelectrics, Reston Publishing Company, Virginia, 1983.
  • A.H. Wilson, The Theory of Metals, Cambridge University Press, London, 1953.
  • C.J. Glassbrenner and G.A. Slack, Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point, Phys. Rev. 134 (1964), p. A1058-1–A1058-8.
  • Ö.C. Yelgel and G.P. Srivastava, Thermoelectric properties of p-type (Bi2Te3)x (Sb2Te3)12x single crystals doped with 3 wt. % Te, J. Appl. Phys. 113 (2013), p. 073709-1–073709-8.
  • T.M. Tritt, Thermal Conductivity Theory, Properties and Applications, Kluwer Academic/Plenum Publishers, London, 2004.
  • M.G. Holland, Phonon Scattering in Semiconductors From Thermal Conductivity Studies, Phys. Rev. 134 (1964), p. A471-1–A471-10.
  • J.J. Martin, Thermal conductivity of Mg2Si, Mg2Ge and Mg2Sn, J. Phys. Chem. Sol. 33 (1972), p. 1139–1148.
  • M. Grundmann, The Physics of Phonons: An Introduction Including Devices and Nanophysics, Springer, Berlin, 2006.
  • V.K. Zaitsev, M.l. Fedorov, A.T. Burkov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, S.V. Ordin, S.V. Sano, and M.V. Vedernikov, Proceedings of the 21st International conference on Thermoelectrics, Some features of the conduction band structure, transport and optical properties of n-type Mg, Si-Mg, Sn alloys, California USA, 2002. p. 151–154.
  • M.I. Fedorov, D.A. Pshenay-Severin, V.K. Zaitsev, S.V. Sano, and M.V. Vedernikov, Proceedings of the 22nd International Conference on Thermoelectrics, Features of conduction mechanism in n-type MgzSi-Sn, solid solutions, France, 2003. p. 142–145
  • C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley and Sons Inc., USA, 2005.
  • M. Ioannou, G.S. Polymeris, E. Hatzikraniotis, K.M. Paraskevopoulas, and Th Kyratsi, Effect of Bi-doping and Mg-excess on the thermoelectric properties of Mg2Si materials, J. Phys. Chem. Solids 75 (2014), p. 984–991.
  • D.R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., Taylor and Francis Group LLC, Boca Raton, FL, 2007.
  • K. Kutorasinski, B. Wiendlocha, J. Tobola, and S. Kaprzyk, Importance of relativistic effects in electronic structure and thermopower calculations for Mg2Si, Mg2Ge, and Mg2Sn, Phys. Rev. B 89 (2014), p. 115205-1–115205-9.
  • P. Pandit and P.S. Sanyal, First principles study of electronic, elastic and lattice dynamical properties of Mg2X (X = Si, GeandSn) compounds, Indian J. Pure Appl. Phys. 49 (2011), p. 692–697.
  • H. Wang, H. Jin, W. Chu, and Y. Guo, Thermodynamic properties of Mg2Si4 and Mg2Ge investigated by first principles method, J. Alloys Compd. 499 (2010), p. 68–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.