482
Views
4
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Insight into lattice thermal impedance via equilibrium molecular dynamics: case study on Al

, , , &
Pages 596-619 | Received 09 Aug 2015, Accepted 13 Jan 2016, Published online: 15 Feb 2016

References

  • R. Peierls, On the kinetic theory of thermal conduction in crystals, Ann. Phys. 395 (1929), pp. 1055–1101.
  • R.E. Peierls, Quantum Theory of Solids, Clarendon Press, Oxford, 1955.
  • R. Berman, Thermal Conduction in Solids, Oxford University Press, Oxford, 1976.
  • L.D. Landau and E.M. Lifshitz, Physical Kinetics, Pergamon Press, Oxford, 1981.
  • A.V. Evteev, E.V. Levchenko, I.V. Belova, and G.E. Murch, Two-fluid nature of phonon heat conduction in a monatomic lattice, Philosophical Magazine 95 (2015), pp. 2571–2595.10.1080/14786435.2015.1065020
  • A.J.C. Ladd, B. Moran, and W.G. Hoover, Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics, Phys. Rev. B 34 (1986), pp. 5058–5064.10.1103/PhysRevB.34.5058
  • A.J.H. McGaughey and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations. part I. Lennard-Jones Argon, Int. J. Heat Mass Transfer 47 (2004), pp. 1783–1798.10.1016/j.ijheatmasstransfer.2003.11.002
  • A.J.H. McGaughey and M. Kaviany, Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction, Adv. Heat Transfer 39 (2006), pp. 169–255.10.1016/S0065-2717(06)39002-8
  • H. Kaburaki, J. Li, S. Yip, and H. Kimizuka, Dynamical thermal conductivity of argon crystal, J. Appl. Phys. 102 (2007), pp. 043514–6.10.1063/1.2772547
  • A.V. Evteev, L. Momenzadeh, E.V. Levchenko, I.V. Belova, and G.E. Murch, Molecular dynamics prediction of phonon-mediated thermal conductivity of f.c.c. CU, Philos. Mag. 94 (2014), pp. 731–751.10.1080/14786435.2013.861090
  • A.V. Evteev, L. Momenzadeh, E.V. Levchenko, I.V. Belova, and G.E. Murch, Decomposition model for phonon thermal conductivity of a monatomic lattice, Philos. Mag. 94 (2014), pp. 3992–4014.10.1080/14786435.2014.969351
  • E.V. Levchenko, A.V. Evteev, L. Momenzadeh, I.V. Belova, and G.E. Murch, Phonon-mediated heat dissipation in a monatomic lattice: case study on Ni, Philos. Mag. 95 (2015) pp. 3640–3673.
  • J.H. Irving and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950), pp. 817–829.10.1063/1.1747782
  • M.S. Green, Markoff Random processes and the statistical Mechanics of Time-Dependent phenomena. II. Irreversible processes in fluids, J. Chem. Phys. 22 (1954), pp. 398–413.
  • R. Kubo, Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957), pp. 570–586.10.1143/JPSJ.12.570
  • D.A. McQuarrie, Statistical Mechanics, Harper & Row, New York, 1967.
  • P. Debye, On the theory of specific heat, Ann. Phys. 344 (1912), pp. 789–839.10.1002/(ISSN)1521-3889
  • P. Debye, Vorträge über die kinetische Theorie der Materie und der Elektrizität [Lectures on the kinetic theory of matter and electricity], Teubner, Leipzig, 1914.
  • A.B. Lidiard, An essay on the heat of transport in solids and a partial guide to the literature, Diffus. Found. 4 (2015), pp. 57–68.10.4028/www.scientific.net/DF.4
  • F.A. Lindemann, The calculation of molecular vibration frequencies, Z. Phys. 11 (1910), pp. 609–612.
  • M. Born, Thermodynamics of crystals and melting, J. Chem. Phys. 7 (1939), pp. 591–603.10.1063/1.1750497
  • J.J. Gilvarry, The Lindemann and Grüneisen Laws, Phys. Rev. 102 (1956), pp. 308–316.10.1103/PhysRev.102.308
  • J.L. Tallon, A hierarchy of catastrophes as a succession of stability limits for the crystalline state, Nature 342 (1989), pp. 658–660.10.1038/342658a0
  • J. Wang, J. Li, S. Yip, D. Wolf, and S. Phillpot, Unifying two criteria of born: Elastic instability and melting of homogeneous crystals, Physica 240 (1997), pp. 396–403.10.1016/S0378-4371(97)00161-1
  • Z.K. Liu, Y. Wang, and S. Shang, Thermal expansion anomaly regulated by entropy, Sci. Rep. 4 (2014), pp. 7043–7049.10.1038/srep07043
  • J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957), pp. 1175–1204.10.1103/PhysRev.108.1175
  • Y. Mishin, D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B 59 (1999), pp. 3393–3407.10.1103/PhysRevB.59.3393
  • G.P. Purja Pun, Y. Mishin, Development of an interatomic potential for the Ni-Al system, Philos. Mag. 89 (2009), pp. 3245–3267.10.1080/14786430903258184
  • T.B. Massalski (ed.), Binary Alloy Phase Diagrams, ASM, Materials Park, OH, 1986.
  • G. Leibfried and E. Schlömann, Wärmeleitung in Elektrisch Isolierenden Kristallen [Heat conduction in Electrically insulative crystals], Nachr. Akad. Wiss. Göttingen, Math. Phys. K1 II a (1954), pp. 71–93.
  • P.G. Klemens, Solid State Phys. 7, Academic Press, New York, 1958.
  • C.L. Julian, Theory of heat conduction in Rare-Gas crystals, Phys. Rev. 137 (1965), pp. A128–A137.10.1103/PhysRev.137.A128
  • L.D. Landau and E.M. Lifshitz, On the Kinetic Theory of Thermal Conduction in Crystals, Statistical Physics, Part 1, Pergamon Press, New York, 1980.
  • A. Einstein, Elementary considerations of thermal molecular motion in solids, Ann. Phys. 35 (1911), pp. 679–694.
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992), pp. 6131–6140.10.1103/PhysRevB.46.6131
  • J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press, Amsterdam, 2006.
  • L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931), pp. 405–426.10.1103/PhysRev.37.405
  • L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (1931), pp. 2265–2279.10.1103/PhysRev.38.2265
  • S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.
  • D.D. Fitts, Nonequilibrium Thermodynamics, McGraw-Hill Book, New York, 1962.
  • H.B. Callen and T.A. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951), pp. 34–40.10.1103/PhysRev.83.34
  • L. Landau, Theory of the superfluidity of Helium II, Phys. Rev. 60 (1941), pp. 356–358.10.1103/PhysRev.60.356
  • L. Landau, The theory of superfluidity of Helium II, J. Phys. U.S.S.R. 5 (1941), pp. 71–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.