469
Views
19
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

, , &
Pages 1093-1109 | Received 28 Sep 2015, Accepted 09 Feb 2016, Published online: 10 Mar 2016

References

  • C. Cheng and H.J. Fan, Branched nanowires: Synthesis and energy applications, Nano Today 7 (2012), pp. 327–343.10.1016/j.nantod.2012.06.002
  • R. Yu, Q. Lin, S.F. Leung, and Z. Fan, Nanomaterials and nanostructures for efficient light absorption and photovoltaics, Nano Energy 1 (2012), pp. 57–72.10.1016/j.nanoen.2011.10.002
  • V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S.H. Christiansen, Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters, Nano Lett. 9 (2009), pp. 1549–1554.10.1021/nl803641f
  • D.K. Michael, W.B. Shannon, A.P. Jan, B.T.E. Daniel, C.P. Morgan, L.W. Emily, M.S. Joshua, M. Ryan, S.L. Nathan, and A.A. Harry, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater. 9 (2010), pp. 239–244.
  • Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293 (2001), pp. 1289–1292.10.1126/science.1062711
  • C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano 4 (2010), pp. 1443–1450.10.1021/nn901409q
  • J. Bae, H. Kim, X.M. Zhang, C.H. Dang, Y. Zhang, Y.J. Choi, A. Nurmikko, and Z.L. Wang, Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters, Nanotechnology 21 (2010), pp. 095502-1–095502-5.10.1088/0957-4484/21/9/095502
  • F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, and C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes, Nano Lett. 5 (2005), pp. 2287–2291.10.1021/nl051689e
  • E. Garnett and P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett. 10 (2010), pp. 1082–1087.10.1021/nl100161z
  • A.I. Hochbaum, R. Fan, R. He, and P. Yang, Controlled growth of Si nanowire arrays for device integration, Nano Lett. 5 (2005), pp. 457–460.10.1021/nl047990x
  • A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A.J. Flewitt, W.I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A.C. Ferrari, Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties, J. Appl. Phys. 102 (2007), pp. 034302-1–034302-13.10.1063/1.2764050
  • S. Sharma and M.K. Sunkara, Direct synthesis of single-crystalline silicon nanowires using molten gallium and silane plasma, Nanotechnology 15 (2004), pp. 130–134.10.1088/0957-4484/15/1/025
  • J. Bauer, F. Fleischer, O. Breitenstein, L. Schubert, P. Werner, U. Gösele, and M. Zacharias, Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy, Appl. Phys. Lett. 90 (2007), pp. 012105-1–012105-3.10.1063/1.2428402
  • X.L. Ma, Y.L. Zhu, and Z. Zhang, Growth orientation of one-dimensional silicon nanowires prepared by thermal evaporation, Philos. Mag. Lett. 82 (2002), pp. 461–468.10.1080/09500830210144391
  • A.M. Morales, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279 (1998), pp. 208–211.10.1126/science.279.5348.208
  • Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt, A.C. Ferrari, and W.I. Milne, Deep reactive ion etching as a tool for nanostructure fabrication, J. Vac. Sci. Technol. B 27 (2009), pp. 1520–1526.
  • M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, and N.B. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching, J. Phys. Chem. C 112 (2008), pp. 4444–4450.10.1021/jp077053o
  • B. Ozdemir, M. Kulakci, R. Turan, and H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires, Nanotechnology 22 (2011), pp. 155606-1–155606-7.10.1088/0957-4484/22/15/155606
  • S.K. Srivastava, D. Kumar, S.W. Schmitt, K.N. Sood, S.H. Christiansen, and P.K. Singh, Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics, Nanotechnology 25 (2014), pp. 175601-1–175601-17.10.1088/0957-4484/25/17/175601
  • G. Akgul, F.A. Akgul, E. Mulazimoglu, H.E. Unalan, and R. Turan, Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes, J. Phys. D Appl. Phys. 47 (2014), pp. 065106-1–065106-7.10.1088/0022-3727/47/6/065106
  • M. Kulakci, T. Colakoglu, B. Ozdemir, M. Parlak, H.E. Unalan, and R. Turan, Silicon nanowire-silver indium selenide heterojunction photodiodes, Nanotechnology 24 (2013), pp. 375203-1–375203-7.10.1088/0957-4484/24/37/375203
  • S.K. Srivastava, D. Kumar, P.K. Singh, M. Kar, V. Kumar, and M. Husain, Fabrication of silicon nanowire arrays based solar cell with improved performance, Sol. Energy Mater. Sol. Cells 94 (2010), pp. 1506–1511.
  • D. Kumar, S.K. Srivastava, P.K. Singh, M. Husain, and K. Vikram, Fabrication of silicon nanowire arrays based solar cell with improved performance, Sol. Energy Mater. Sol. Cells 95 (2011), pp. 215–218.
  • F.A. Akgul, G. Akgul, H.H. Gullu, H.E. Unalan, and R. Turan, Improved diode properties in zinc telluride thin film-silicon nanowire heterojunctions, Philos. Mag. 95 (2015), pp. 1164–1183.10.1080/14786435.2015.1026296
  • F.A. Akgul, G. Akgul, H.H. Gullu, H.E. Unalan, and R. Turan, Enhanced diode performance in cadmium telluride–silicon nanowire heterostructures, J. Alloys Comp. 644 (2015), pp. 131–139.10.1016/j.jallcom.2015.04.195
  • Ü. Özgür, D. Hofstetter, and H. Morkoç, ZnO devices and applications: A review of current status and future prospects, Proc. IEEE 98 (2010), pp. 1255–1268.
  • J.D. Lee, C.Y. Park, H.S. Kim, J.J. Lee, and Y.-G. Choo, A study of conduction of ZnO film/p-Si heterojunction fabricated by photoinduced electrodeposition under illumination, J. Phys. D Appl. Phys. 43 (2010), pp. 365403-1–365403-6.10.1088/0022-3727/43/36/365403
  • H. Sun, Q.-F. Zhang, and J.-L. Wu, Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure, Nanotechnology 17 (2006), pp. 2271–2274.10.1088/0957-4484/17/9/033
  • X.-M. Zhang, D. Golberg, Y. Bando, and N. Fukata, n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays, Nanoscale 4 (2012), pp. 737–741.10.1039/C2NR11752E
  • G.C. Park, S.M. Hwang, J.H. Lim, and J. Joo, Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method, Nanoscale 6 (2014), pp. 1840–1847.10.1039/C3NR04957D
  • P. Chen, X. Ma, and D. Yang, Ultraviolet electroluminescence from ZnO/p-Si heterojunctions, J. Appl. Phys. 101 (2007), pp. 053103-1–053103-4.10.1063/1.2464185
  • S. Majumdar, S. Chattopadhyay, and P. Banerji, Electrical characterization of p-ZnO/p-Si heterojunction, Appl. Surf. Sci. 255 (2009), pp. 6141–6144.10.1016/j.apsusc.2009.01.067
  • Y. Zhang, J. Xu, B. Lin, Z. Fu, S. Zhong, C. Liu, and Z. Zhang, Fabrication and electrical characterization of nanocrystalline ZnO/Si heterojunctions, Appl. Surf. Sci. 252 (2006), pp. 3449–3453.10.1016/j.apsusc.2005.04.053
  • S. Chirakkara and S.B. Krupanidhi, Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer, Thin Solid Films 520 (2012), pp. 5894–5899.10.1016/j.tsf.2012.05.003
  • P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, and Y.S. Yu, Ti doped ZnO thin film based UV photodetector: Fabrication and characterization, J. Alloys Comp. 624 (2015), pp. 251–257.10.1016/j.jallcom.2014.10.071
  • K. Thirunavukkarasu and R. Jothiramalingam, Synthesis and structural characterization of Ga-ZnO nanodisk/nanorods formation by polymer assisted hydrothermal process, Powder Technol. 239 (2013), pp. 308–313.10.1016/j.powtec.2013.01.068
  • M.A. Escobedo and U. Pal, Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping, Appl. Phys. Lett. 93 (2008), pp. 193120-1–193120-3.10.1063/1.3026746
  • J. Joo, B.Y. Chow, M. Prakash, E.S. Boyden, and J.M. Jacobson, Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis, Nat. Mater. 10 (2011), pp. 596–601.10.1038/nmat3069
  • H. Wang, S. Baek, J. Song, J. Lee, and S. Lim, Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays, Nanotechnology 19 (2008), pp. 075607-1–075607-6.10.1088/0957-4484/19/7/075607
  • G.C. Park, S.M. Hwang, J.H. Lim, and J. Joo, Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method, Nanoscale 6 (2014), pp. 1840–1847.10.1039/C3NR04957D
  • R. Prabakaran, T. Monteiro, M. Peres, A.S. Viana, A.F. da Cunha, H. Águasa, A. Gonçalves, E. Fortunato, R. Martins, and I. Ferreira, Optical and structural analysis of porous silicon coated with GZO films using rf magnetron sputtering, Thin Solid Films 515 (2007), pp. 8664–8669.10.1016/j.tsf.2007.03.098
  • M. Kulakci, F. Es, B. Ozdemir, H.E. Unalan, and R. Turan, Application of Si nanowires fabricated by metal-assisted etching to crystalline Si solar cells, IEEE J. Photovolt. 3 (2013), pp. 548–553.10.1109/JPHOTOV.2012.2228300
  • L. Lutterotti, S. Matthies, and H.R. Wenk, MAUD: a friendly Java program for material analysis using diffraction, Newslett. CPD 21 (1999), pp. 14–15.
  • F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, and R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films, Mater. Chem. Phys. 147 (2014), pp. 987–995.10.1016/j.matchemphys.2014.06.047
  • J.C.Tauc, Optical Properties of Solids, F. Abeles ed., North-Holland Publishing, Amsterdam, 1972.
  • J.C. Tauc and A. Menth, States in the gap: Journal of Non-Crystalline Solids 8–10 (1972), pp. 569–585.10.1016/0022-3093(72)90194-9
  • X.M. Zhang, D. Golberg, Y. Bando, and N. Fukata, n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays, Nanoscale 4 (2012), pp. 737–741.10.1039/C2NR11752E
  • S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, New York, NY, 2006.10.1002/0470068329
  • R.L. Anderson, Experiments on Ge-GaAs heterojunctions, Solid-State Electron. 5 (1962), pp. 341–344.10.1016/0038-1101(62)90115-6
  • D.K. Schroder, Semiconductor Material and Device Characterization, 3rd ed., John Wiley & Sons, New York, NY, 2006.
  • P.P. Ramesh, O.M. Hussain, S. Uthanna, B.S. Naidu, and P.J. Reddy, Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions, Mater. Lett. 34 (1998), pp. 217–221.10.1016/S0167-577X(97)00158-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.