636
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

, , &
Pages 1047-1072 | Received 29 Oct 2015, Accepted 12 Feb 2016, Published online: 04 Mar 2016

References

  • G.I. Taylor, C.F. Elam, Bakerian lecture. The distortion of an aluminium crystal during a tensile test. Proc. R. Soc. A: Math., Phys. Eng. Sci. 102 (1923), pp. 643–667.10.1098/rspa.1923.0023
  • G. Taylor and C. Elam, The plastic extension and fracture of aluminium crystals. Proc. R. Soc. A: Math., Phys. Eng. Sci. 108 (1925), pp. 28–51.10.1098/rspa.1925.0057
  • F. Grytten, B. Holmedal, O.S. Hopperstad, and T. Børvik, Evaluation of identification methods for YLD2004-18p. Int. J. Plast. 24 (2008), pp. 2248–2277.10.1016/j.ijplas.2007.11.005
  • C. Beradai, M. Berveiller, and P. Lipinski, Plasticity of metallic polycrystals under complex loading paths. Int. J. Plast. 3 (1987), pp. 143–162.10.1016/0749-6419(87)90004-0
  • P. Zattarin, P. Lipinski, and A. Rosochowski, Numerical study of the influence of microstructure on subsequent yield surfaces of polycrystalline materials. Int. J. Mech. Sci. 46 (2004), pp. 1377–1398.10.1016/j.ijmecsci.2004.07.003
  • A. Saai, S. Dumoulin, and O. Hopperstad, Influence of texture and grain shape on the yield surface in aluminium sheet material subjected to large deformations. AIP Conference Proceedings, vol. 1353, Belfast, 2011, p. 85.10.1063/1.3589496
  • F. Barlat, Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Mat. Sci. Eng. 91 (1987), pp. 55–72.10.1016/0025-5416(87)90283-7
  • F. Barlat and O. Richmond, Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets. Mat. Sci. Eng. 95 (1987), pp. 15–29.10.1016/0025-5416(87)90494-0
  • S.-H. Choi, J. Brem, F. Barlat, and K. Oh, Macroscopic anisotropy in AA5019A sheets. Acta Mater. 48 (2000), pp. 1853–1863.10.1016/S1359-6454(99)00470-X
  • G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. A: Math., Phys. Eng. Sci. (1934) 145, pp. 362–387.10.1098/rspa.1934.0106
  • E. Orowan, Mechanical strength properties and real structure of crystals. Zeitschrift für Physik 89 (1934), pp. 327–343.
  • U. Kocks, Laws for work-hardening and low-temperature creep. J. Eng. Mater. 98 (1976), pp. 76.
  • H. Mecking and U. Kocks, Kinetics of flow and strain-hardening. Acta Metall. 29 (1981), pp. 1865–1875.10.1016/0001-6160(81)90112-7
  • O. Bouaziz, D. Barbier, J. Embury, and G. Badinier, An extension of the Kocks–Mecking model of work hardening to include kinematic hardening and its application to solutes in ferrite. Philos. Mag. 93 (2013), pp. 247–255.10.1080/14786435.2012.704419
  • A. Acharya and A. Beaudoin, Grain-size effect in viscoplastic polycrystals at moderate strains. J. Mech. Phys. Solids 48 (2000), pp. 2213–2230.10.1016/S0022-5096(00)00013-2
  • J. Li and A. Soh. Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plast. 39 (2012), pp. 88–102.
  • D. Kuhlmann-Wilsdorf, Theory of workhardening 1934–1984. Metall. Trans. A 16 (1985), pp. 2091–2108.10.1007/BF02670414
  • S.C. Baik, Y. Estrin, H.S. Kim, and R.J. Hellmig, Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing. Mat. Sci. Eng.:A 351 (2003), pp. 86–97.10.1016/S0921-5093(02)00847-X
  • G. Thomas, Observations of dislocations and precipitates in aluminium alloys. Philos. Mag. 4 (1959), pp. 606–611.10.1080/14786435908238256
  • J. Byrne, M.-E. Fine, and A. Kelly, Precipitate hardening in an aluminium-copper alloy. Philos. Mag. 6 (1961), pp. 1119–1145.10.1080/14786436108239674
  • K.G. Russell and M. Ashby, Slip in aluminum crystals containing strong, plate-like particles. Acta Metall. 18 (1970), pp. 891–901.10.1016/0001-6160(70)90017-9
  • M. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21 (1970), pp. 399–424.10.1080/14786437008238426
  • Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 32 (1984), pp. 57–70.10.1016/0001-6160(84)90202-5
  • Y. Estrin, Dislocation theory based constitutive modelling: foundations and applications. J. Mater. Process. Technol. 80 (1998), pp. 33–39.10.1016/S0924-0136(98)00208-8
  • J.H. Kim, M.-G. Lee, D. Kim, and R. Wagoner, Micromechanics-based strain hardening model in consideration of dislocation-precipitate interactions. Met. Mater. Int. 17 (2011), pp. 291–300.10.1007/s12540-011-0417-4
  • L. Cheng, W. Poole, J. Embury, and D. Lloyd, The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metall. Mater. Trans. A 34 (2003), pp. 2473–2481.10.1007/s11661-003-0007-2
  • F. Roters, D. Raabe, and G. Gottstein, Work hardening in heterogeneous alloys – a microstructural approach based on three internal state variables. Acta Mater. 48 (2000), pp. 4181–4189.10.1016/S1359-6454(00)00289-5
  • C. Teodosiu and J.L. Raphanel. Finite element simulations of large elastoplastic deformations of multicrystals, Proceedings of the International Seminar MECAMAT91, Rotterdam, 1991, pp. 153–168.
  • L. Tabourot, M. Fivel, and E. Rauch, Generalised constitutive laws for f.c.c. single crystals. Mat. Sci. Eng.: A 234 (1997) pp. 639–642.10.1016/S0921-5093(97)00353-5
  • D. Cédat, O. Fandeur, C. Rey, and D. Raabe, Polycrystal model of the mechanical behavior of a Mo–TiC30 vol.% metal–ceramic composite using a three-dimensional microstructure map obtained by dual beam focused ion beam scanning electron microscopy. Acta Mater. 60 (2012), pp. 1623–1632.10.1016/j.actamat.2011.11.055
  • M. Shiekhelsouk, V. Favier, K. Inal, and M. Cherkaoui, Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect. Int. J. Plast. 25 (2009), pp. 105–133.10.1016/j.ijplas.2007.11.004
  • M. Cherkaoui, A. Soulami, A. Zeghloul, and M. Khaleel, A phenomenological dislocation theory for martensitic transformation in ductile materials: From micro-to macroscopic description. Philos. Mag. 88 (2008), pp. 3479–3512.10.1080/14786430802043646
  • R. Schouwenaars, Some basic results in the mathematical analysis of dislocation storage and annihilation in stage II and stage III strain hardening. Philos. Mag. 94 (2014), pp. 3120–3136.10.1080/14786435.2014.953619
  • A. Simar, Y. Bréchet, B. De Meester, A. Denquin, and T. Pardoen, Microstructure, local and global mechanical properties of friction stir welds in aluminium alloy 6005A-T6. Mater. Sci. Eng.: A 486 (2008), pp. 85–95.10.1016/j.msea.2007.08.041
  • O.R. Myhr, Ø. Grong, and K.O. Pedersen, A combined precipitation, yield strength, and work hardening model for Al–Mg–Si alloys. Metall. Mater. Trans. A 41 (2010), pp. 2276–2289.10.1007/s11661-010-0258-7
  • O.R. Myhr and Ø. Grong, Modelling of non-isothermal transformations in alloys containing a particle distribution. Acta Mater. 48 (2000), pp. 1605–1615.10.1016/S1359-6454(99)00435-8
  • O.R. Myhr, Ø. Grong, and S.J. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 49 (2001), pp. 65–75.10.1016/S1359-6454(00)00301-3
  • O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara, Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater. 52 (2004), pp. 4997–5008.10.1016/j.actamat.2004.07.002
  • N. Anjabin, A. Karimi Taheri, and H Kim, Crystal plasticity modeling of the effect of precipitate states on the work hardening and plastic anisotropy in an Al–Mg–Si alloy. Comput. Mater. Sci. 2014 83, pp. 78–85.10.1016/j.commatsci.2013.09.031
  • M. Khadyko, S. Dumoulin, T. Børvik, and O. Hopperstad, An experimental-numerical method to determine the work-hardening of anisotropic ductile materials at large strains. Int. J. Mech. Sci. 88 (2014), pp. 25–36.10.1016/j.ijmecsci.2014.07.001
  • M. Khadyko, S. Dumoulin, G. Cailletaud, and O. Hopperstad, Latent hardening and plastic anisotropy evolution in AA6060 aluminium alloy. Int. J. Plast. 76 (2016), pp. 51–74.10.1016/j.ijplas.2015.07.010
  • O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC Press, 2010.
  • P. Bridgman, The stress distribution at the neck of a tension specimen. Trans Am. Soc. Met. 32 (1944), pp. 553–574.
  • G. Le Roy, J. Embury, G. Edwards, and M. Ashby, A model of ductile fracture based on the nucleation and growth of voids. Acta Metall. 29 (1981), pp. 1509–1522.10.1016/0001-6160(81)90185-1
  • J. Johnsen, J.K. Holmen, O.R. Myhr, O.S. Hopperstad, and T. Børvik, A nano-scale material model applied in finite element analysis of aluminium plates under impact loading. Comput. Mater. Sci. 79 (2013), pp. 724–735.10.1016/j.commatsci.2013.07.035
  • J. Friedel and L. Vassamillet, Dislocations, Pergamon Press, Oxford, 1964.
  • A. Deschamps and Y. Brechet, Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater. 47 (1998), pp. 293–305.10.1016/S1359-6454(98)00296-1
  • S. Li, O. Engler, and P. Van Houtte, Plastic anisotropy and texture evolution during tensile testing of extruded aluminium profiles. Modell. Simul. Mater. Sci. Eng. 13 (2005), pp. 783–795.10.1088/0965-0393/13/5/011
  • M. Grujicic and S. Batchu, Crystal plasticity analysis of earing in deep-drawn OFHC copper cups. J. Mat. Sci. 37 (2002), pp. 753–764.10.1023/A:1013839914584
  • Stander N, Roux W, Goel T, Eggleston T, Craig K. LS-OPT user’s manual. Livermore Software Technology Corporation, Livermore, CA, 2008.
  • S. Dumoulin, O. Engler, O. Hopperstad, and O. Lademo, Description of plastic anisotropy in AA6063-T6 using the crystal plasticity finite element method. Modell. Simul. Mater. Sci. Eng. 20 (2012), p. 055008.10.1088/0965-0393/20/5/055008
  • B. Milkereit, N. Wanderka, C. Schick, and O. Kessler, Continuous cooling precipitation diagrams of Al–Mg–Si alloys. Mat. Sci. Eng.: A 550 (2012), pp. 87–96.10.1016/j.msea.2012.04.033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.