191
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

n-type conductivity in Si-doped amorphous AlN: an ab initio investigation

Pages 1110-1121 | Received 09 Nov 2015, Accepted 15 Feb 2016, Published online: 11 Mar 2016

References

  • E.F. McCullen, J.S. Thakur, Y.V. Danylyuk, G.W. Auner, and L.W. Rosenberger, Investigation of the occupation behavior for oxygen atoms in AlN films using Raman spectroscopy, J. Appl. Phys. 103 (2008), pp. 063504–063507.
  • Y. Lee and S. Kang, Growth of aluminum nitride thin films prepared by plasma-enhanced atomic layer deposition, Thin Solid Films 446 (2004), pp. 227–231.
  • F. Jose, R. Ramaseshan, S. Bera, A.K. Tyagi, and B. Raj, Response of magnetron sputtered AlN films to controlled atmosphere annealing, J. Phys. D Appl. Phys. 43 (2010), pp. 075305.
  • A. Artieda, M. Barbieri, C.S. Sandu, and P. Muralt, Effect of substrate roughness on c-oriented AlN thin films, J. Appl. Phys. 105 (2009), pp. 024504–024509.
  • S. Bakalova, A. Szekeres, G. Huhn, K. Havancsak, S. Grigorescu, G. Socol, C. Ristoscu, and I.N. Mihailescu, Surface morphology of AlN films synthesized by pulsed laser deposition, Vacuum 84 (2009), pp. 155–157.
  • H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics Processing and Applications, Noyes Publications, Westwood, NJ, 1996.
  • S. Strite and H. Morkoc, GaN, AlN, and InN: A review, J. Vac. Sci. Technol. B 10 (1992), pp. 1237–1266.
  • C. Stampfl and C.G. van de Walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Phys. Rev. B 59 (1998), pp. 5521–5535.
  • A.W. Weimer, G.A. Cochran, G.A. Eisman, J.P. Henley, B.D. Hook, K.L. Mills, T.A. Guiton, A.K. Knudsen, N.R. Nicholas, J.E. Volmering, and W.G. Moor, Rapid process for manufacturing aluminum nitride powder, J. Am. Ceram. Soc. 77 (1994), pp.3–18.
  • A.V. Virkar, T.B. Jackson, and R.A. Cutler, Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride, J. Am. Ceram. Soc. 72 (1989), pp. 2031–2042.
  • T.J. Mroz, Aluminum nitride, Ceram. Bull. 71 (1992), pp. 782–784.
  • Q. Wang, W. Cui, Y. Ge, K. Chen, and Z. Xie, Preparation of spherical AlN granules directly by carbothermal reduction–nitridation method, J. Am. Ceram. Soc. 98 (2015), pp. 392–397.
  • J.H. Edgar, ed., Properties of Group-III Nitrides, EMIS Data Reviews Series, IEE, London, 1994.
  • M.E. Levinshtien, S.L. Rumyantsev, and M.S. Shur, Properties of Advances Semiconductor Materials : GaN, AIN, InN, BN, SiC, SiGe, John Wiley and Sons, Inc., New York, 2001.
  • S.C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, III–nitrides: Growth, characterization, and properties, J. Appl. Phys. 87 (2000), pp. 965–1006.
  • A. Wilmański, M.M. Bućko, Z. Pędzich, and J. Szczerba, Salt-assisted SHS synthesis of aluminium nitride powders for refractory applications, J. Mater. Science and Chem. Eng. 2 (2014), pp. 26–31.
  • C.M. Lin T.-T. Yen, V.V. Felmetsger, M.A. Hopcroft, J.H. Kuypers, and A.P. Pisano, Thermally compensated aluminum nitride Lamb wave resonators for high temperature applications, Appl. Phys. Lett. 97 (2010), pp. 083501–083501.
  • S. Yin, K.J. Tseng, and J. Zhao, Design of AlN-based micro-channel heat sink in direct bond copper for power electronics packaging, Appl. Therm. Eng. 55 (2013), pp. 120–129.
  • T.M. Tritt (ed.), Thermal Conductivity: Theory, Properties, and Applications, Kluwer Academic / Plenum, New York, NY, 2004.
  • H. Shultz and K.H. Thiemann, Crystal structure refinement of AlN and GaN, Solid State Commun. 23 (1977), pp. 815–819.
  • I.Petrov, E. Mojab, R.C. Powell, J.E. Greene, L. Hultman, and J.E. Sundgren, Synthesis of metastable epitaxial zinc-blende-structure AlN by solid-state reaction, Appl. Phys. Lett. 60 (1992), pp. 2491–2493.
  • Q. Xia, H. Xia, and A.L. Ruoff, Pressure-induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition, J. Appl. Phys. 73 (1993), pp. 8198–8200.
  • H. Chen, K. Chen, D.A. Drabold, and M.E. Kordesch, Band gap engineering in amorphous AlxGa1-xN: Experiment and ab initio calculations, App. Phys. Lett. 77 (2000), pp. 1117–1119.
  • J.M. Khoshman and M.E. Kordesch, Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films, Phys. Status Solidi (c) 2 (2005), pp. 2821–2827.
  • J.M. Khoshman and M.E. Kordesch, Optical characterization of sputtered amorphous aluminum nitride thin films by spectroscopic ellipsometry, J. Non-Cryst. Solids 351 (2005), pp. 3334–3340.
  • F. Hajakbari, M.M. Larijani, M. Ghoranneviss, M. Aslaninejad, and A. Hojabri, Optical properties of amorphous AlN thin films on glass and silicon substrates grown by single ion beam sputtering, Jpn. J. of Appl. Phys. 49 (2010), pp. 095802–095807.
  • Y. Taniyasu, M. Kasu, and T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres, Nature (London) 441 (2006), pp. 325–328.
  • M.L. Nakarmi, K.H. Kim, K. Zhu, J.Y. Lin, and H.X. Jiang, Transport properties of highly conductive n-type Al-rich AlxGa1−xN (x>0.7), Appl. Phys. Lett. 85 (2004), pp. 3769–3771.
  • D.F. Hevia, C. Stampfl, F. Vines, and F. Illas, Microscopic origin of n-type behavior in Si-doped AlN, Phys. Rev. B 88 (2013), pp. 085202–085207.
  • Y. Taniyasu, M. Kasu, and T. Makimoto, Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100 cm2 V-1 s-1), Appl. Phys. Lett. 85 (2004), pp. 4672–4674.
  • T. Ive, O. Brandt, H. Kostial, K.J. Friedland, L. Daweritz, and K.H. Ploog, Controlled n-type doping of AlN: Si films grown on 6H-SiC (0001) by plasma-assisted molecular beam epitaxy, Appl. Phys. Lett. 86 (2005), pp. 024106–024108.
  • E. Monroy, J. Zenneck, G. Cherkashinin, O. Ambacher, M. Hermann, M. Stutzmann, and M. Eickhoff, Luminescence properties of highly Si-doped AlN, Appl. Phys. Lett. 88 (2006), pp. 071906–071908.
  • B.N. Pantha, A. Sedhain, J. Li, J.Y. Lin, and H.X. Jiang, Probing the relationship between structural and optical properties of Si-doped AlN, Appl. Phys. Lett. 96 (2010), pp. 131906–131908.
  • D. Pan, J.K. Jian, Y.F. Sun, and R. Wu, Structure and magnetic characteristics of Si-doped AlN films, J. Alloys and Comp. 519 (2012), pp. 41–46.
  • W.W. Lei, D. Liu, P.W. Zhu, X.H. Chen, Q. Zhao, G.H. Wen, Q.L. Cui, and G.T. Zou, Ferromagnetic Sc-doped AlN sixfold-symmetrical hierarchical nanostructures, Appl. Phys. Lett. 95 (2009), pp. 162501–162503.
  • K. Li, X. Du, Y. Yan, H. Wang, Q. Zhan, and H. Jin, First-principles study on ferromagnetism in C-doped AlN, Phys. Lett. A 374 (2010), pp. 3671–3675.
  • F.Y. Ran, M. Subramanian, M. Tanemura, Y. Hayashi, and T. Hihara, Ferromagnetism in Cu-doped AlN films, Appl. Phys. Lett. 95 (2009), pp. 112111–112114.
  • X.H. Ji, S.P. Lau, S.F. Yu, H.Y. Yang, T.S. Herng, and J.S. Chen, Ferromagnetic Cu-doped AlN nanorods, Nanotechnology 18 (2007), pp. 105601–105604.
  • S.Y. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. van Schilfgaarde, M.R. McCartney, D.J. Smith, and N. Newman, Synthesis, characterization and modeling of high quality ferromagnetic Cr-doped AlN thin films, Appl. Phys. Lett. 82 (2003), pp. 3047–3049.
  • D. Kumar, J. Antifakos, M.G. Blamire, and Z.H. Barber, High Curie temperatures in ferromagnetic Cr-doped AlN thin films, Appl. Phys. Lett. 84 (2004), pp. 5004–5006.
  • Y. Endo, T. Sato, Y. Kawamura, and M. Yamamoto, Crystal structure and magnetic properties of Cr-doped AlN films with various Cr concentrations, Mater. Trans. 48 (2007), pp. 465–470.
  • J. Zhang, X.Z. Li, B. Xu, and D.J. Sellmyer, Influence of nitrogen growth pressure on the ferromagnetic properties of Cr-doped AlN thin films, Appl. Phys. Lett. 86 (2005), pp. 212504–212506.
  • R. Deng, K. Jiang, and D. Gall, Optical phonon modes in Al1-xScxN, J. Appl. Phys. 115 (2014), pp. 013506–013510.
  • H.X. Liu, S.Y. Wu, R.K. Singh, L. Gu, D.J. Smith, N. Newman, N.R. Dilley, L. Montes, and M.B. Simmonds, Observation of ferromagnetism above 900K in Cr–GaN and Cr–AlN, Appl. Phys. Lett. 85 (2004), pp. 4076–4078.
  • M.L. Nakarmi, N. Nepal, C. Ugolini, and T.M. Al Tahtamouni, J.Y. Lin, and H.X. Jiang, Correlation between optical and electrical properties of Mg-doped AlN epilayers, Appl. Phys. Lett. 89 (2006), pp. 152120–152122.
  • K. Gurumurugan, H. Chen, G.R. Harp, W.M.J. Jad wisienczak, and H.J. Lozykowski, Visible cathodoluminescence of Er-doped amorphous AlN thin films, Appl. Phys. Lett. 74 (1999), pp. 3008–3010.
  • W.M. Jadwisienczak, H.J. Lozykowski, F. Perjeru, H. Chen, G.R. Harp, M. Kordesch, and I.G. Brown, Luminescence of Tb ions implanted into amorphous AlN thin films grown by sputtering, Appl. Phys. Lett. 76 (2000), pp. 3376–3378.
  • M.L. Caldwell, A.L. Martin, V.I. Dimitrova, P.G. Patten, M.E. Kordesch, and H.H. Richardson, Emission properties of an amorphous AlN: Cr3+ thin-film phosphor, Appl. Phys. Lett. 78 (2001), pp. 1246–1248.
  • M. Maqbool, H.H. Richardson, and M.E. Kordesch, Direct ultraviolet excitation of an amorphous AlN: Praseodymium phosphor by codoped Gd3+ cathodoluminescence, Appl. Phys. Lett. 91 (2007), pp. 193511–193511.
  • V. Dimitrova, P.G. Van Patten, H. Richardson, and M.E. Kordesch, Photo-, cathodo-, and electroluminescence studies of sputter deposited AlN: Er thin films, Appl. Surf. Sci. 175–176 (2001), pp. 480–483.
  • F.S. Liu, Q.L. Liu, J.K. Liang, J. Luo, H. Zhang, Y. Zhang, B. Sun, and G. Rao, Visible and infrared emissions from c-axis oriented AlN: Er films grown by magnetron sputtering, Appl. Phys. 99 (2006), pp. 053515–053519.
  • M.L. Caldwell, A.L. Martin, C.M. Spalding, V.I. Dimitrova, P.G. Van Patten, M.E. Kordesch, and H.H. Richardson, Visible emission from amorphous AlN thin-film phosphors with Cu, Mn, or Cr, J. Vac. Sci. Technol. A 19 (2001), pp. 1894–1897.
  • M. Maqbool, I. Ahmad, G. Ali, and K. Maaz, Energy level splitting and luminescence enhancement in AlN: Er by an external magnetic field, Optical Mater. 46 (2015), pp. 601–604.
  • M. Maqbool and T.R. Corn, Optical spectroscopy and energy transfer in amorphous AlN-doped erbium and ytterbium ions for applications in laser cavities, Opt. Lett. 35 (2010), pp. 3117–3119.
  • P. Ordejón, E. Artacho, and J.M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B 53 (1996), pp. 10441–10444.
  • M. Durandurdu, Pressure-induced phase transition in AlN: An ab initio molecular dynamics study, J. Alloys and Comp. 480 (2009), pp. 917–921.
  • M. Durandurdu, Uncovering nanoclusters in amorphous aln: An Ab initio study, J. Am. Ceram. Soc. 98 (2015), pp. 1095–1098.
  • N. Troullier and J.M. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991), pp. 1993–2006.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), pp. 3098–3100.
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1998), pp. 785–789.
  • M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 (1981), pp. 7182–7190.
  • K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystall. 44 (2011), pp. 1272–1276.
  • J. Musil, M. Šašek, P. Zeman, R. Čerstvý, D. Heřman, J.G. Han, and V. Šatava, Properties of magnetron sputtered Al–Si–N thin films with a low and high Si content, Surf. Coat. Technol. 202 (2008), pp. 3485–3493.
  • A. Pélisson-Schecker, H.J. Hug, and J. Patscheider, Morphology, microstructure evolution and optical properties of Al–Si–N nanocomposite coatings, Surf. Coat. Technol. 257 (2014), pp. 114–120.
  • H. Liu, W. Tang, D. Hui, L. Hei, and F. Lu, Characterization of (Al, Si) N films deposited by balanced magnetron sputtering, Thin Solid Films 517 (2009), pp. 5988–5993.
  • D. Pan, J.K. Jian, Y.F. Sun, and R. Wu, Structure and magnetic characteristics of Si-doped AlN films, J. Alloys Compd. 519 (2012), pp. 41–46.
  • K. Jarolimek, R.A. De Groot, G.A. De Wijs, and M. Zeman, Atomistic models of hydrogenated amorphous silicon nitride from first principles, Phys. Rev. B 82 (2010), pp. 205201–205209.
  • L. Giacomazzi and P. Umari, First-principles investigation of electronic, structural, and vibrational properties of a-Si3N4, Phys. Rev. B 80 (2009), pp. 144201–144212.
  • K. Chen and D.A. Drabold, First principles molecular dynamics study of amorphous AlxGa1-xN alloys, J. App. Phys. 91 (2002), pp. 9743–9751.
  • B. Cai and D.A. Drabold, Properties of amorphous GaN from first-principles simulations, Phys. Rev. B 84 (2011), pp. 075216–075221.
  • B. Cai and D.A. Drabold, Ab initio models of amorphous InN, Phys. Rev. B 79 (2009), pp. 195204–195207.
  • J. Ziman, Models of disorder, the theoretical physics of homogeneously disordered systems, Cambridge University Press, London, 1979.
  • Y. Li and D.A. Drabold, Electronic signatures of topological disorder in amorphous grapheme, IET Circuits, Devices & Systems 9 (2014), pp. 13–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.