469
Views
17
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of stacking fault energy on defect formation process in face-centered cubic metals

, , , &
Pages 1579-1597 | Received 23 Dec 2015, Accepted 21 Mar 2016, Published online: 26 Apr 2016

Reference

  • A.J.E. Foreman , W.J. Phythian , and C.A. English , The molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential , Phil. Mag. A 66 (1992), pp. 671–695.
  • A.F. Calder and D.J. Bacon , A molecular dynamics study of displacement cascades in α-iron , J. Nucl. Mater. 207 (1993), pp. 25–45.
  • W.J. Phythian , R.E. Stoller , A.J.E. Foreman , A.F. Calder , and D.J. Bacon , A comparison of displacement cascades in copper and iron by molecular-dynamics and its application to microstructural evolution , J. Nucl. Mater. 223 (1995), pp. 245–261.
  • F. Gao , D.J. Bacon , P.E.J. Flewitt , and T.A. Lewis , A molecular dynamics study of temperature effects on defect production by displacement cascades in α-iron , J. Nucl. Mater. 249 (1997), pp. 77–86.
  • R.E. Stoller , G.R. Odette , and B.D. Wirth , Primary damage formation in bcc iron , J. Nucl. Mater. 251 (1997), pp. 49–60.
  • B.J. Lee , B.D. Wirth , J.H. Shim , J. Kwon , S.C. Kwon , and J.H. Hong , Modified embedded-atom method interatomic potential for the Fe–Cu alloy system and cascade simulations on pure Fe and Fe–Cu alloys , Phys. Rev. B 71 (2005), pp. 184205-1–184205-15.
  • L. Malerba , Molecular dynamics simulation of displacement cascades in α-Fe: A critical review , J. Nucl. Mater. 351 (2006), pp. 28–38.
  • D.A. Terentyev , C. Lagerstedt , P. Olsson , K. Nordlund , J. Wallenius , C.S. Becquart , and L. Malerba , Effect of the interatomic potential on the features of displacement cascades in α-Fe: A molecular dynamics study , J. Nucl. Mater. 351 (2006), pp. 65–77.
  • A.F. Calder , D.J. Bacon , A.V. Barashev , and Y.N. Osetsky , Effect of mass of the primary knock-on atom on displacement cascade debris in α -iron , Phil. Mag. Lett. 88 (2008), pp. 43–53.
  • E. Zarkadoula , S.L. Daraszewicz , D.M. Duffy , M.A. Seaton , I.T. Todorov , K. Nordlund , M.T. Dove , and K. Trachenko , The nature of high-energy radiation damage in iron , J. Phys. Condens. Matter 25 (2013), pp. 125402-1–125402-7.
  • Y.N. Osetsky , D.J. Bacon , B.N. Singh , and B.D. Wirth , Atomistic study of the generation, interaction, accumulation and annihilation of cascade-induced defect clusters , J. Nucl. Mater. 307–311 (2002), pp. 852–861.
  • D.J. Bacon , F. Gao , and Y.N. Osetsky , The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations , J. Nucl. Mater. 276 (2000), pp. 1–12.
  • K. Nordlund and R.S. Averback , Point defect movement and annealing in collision cascades , Phys. Rev. B 56 (1997), pp. 2421–2431.
  • Y.N. Osetsky , D.J. Bacon , and A. Serra , Thermally activated glide of small dislocation loops in metals , Phil. Mag. Lett. 79 (1999), pp. 273–282.
  • Y.N. Osetsky , D.J. Bacon , A. Serra , B.N. Singh , and S.I. Golubov , Stability and mobility of defect clusters and dislocation loops in metals , J. Nucl. Mater. 276 (2000), pp. 65–77.
  • N.V. Doan , Interstitial cluster motion in displacement cascades , J. Nucl. Mater. 283–287 (2000), pp. 763–767.
  • N. Soneda and T.D. de la Rubia , Migration kinetics of the self-interstitial atom and its clusters in bcc Fe , Phil. Mag. A 81 (2001), pp. 331–343.
  • Y.N. Osetsky , D.J. Bacon , A. Serra , B.N. Singh , and S.I. Golubov , One-dimensional atomic transport by cluster of self-interstitial atoms in iron and copper , Phil. Mag. 83 (2003), pp. 61–91.
  • Y.N. Osetsky and D.J. Bacon , Atomic-scale modelling of primary damage and properties of radiation defects in metals , Nucl. Instrum. Meth. Phys. Res. Sect. B 202 (2003), pp. 31–43.
  • Y.N. Osetsky , M. Victoria , A. Serra , S.I. Golubov , and V. Priego , Computer simulation of vacancy and interstitial clusters in bcc and fcc metals , J. Nucl. Mater. 251 (1997), pp. 34–48.
  • Y.N. Osetsky , A. Serra , B.N. Singh , and S.I. Golubov , Structure and properties of clusters of self-interstitial atoms in fcc copper and bcc iron , Phil. Mag. A 80 (2000), pp. 2131–2157.
  • Y.N. Osetsky , D.J. Bacon , and B.N. Singh , Statistical analysis of cluster production efficiency in MD simulations of cascades in copper , J. Nucl. Mater. 307–311 (2002), pp. 866–870.
  • D.J. Bacon , F. Gao , and Y.N. Osetsky , Computer simulation of displacement cascades and the defects they generate in metals , Nucl. Instrum. Meth. B 153 (1999), pp. 87–98.
  • B.N. Singh , M. Eldrup , A. Horsewell , P. Ehrhart , and F. Dworschak , On recoil energy dependent void swelling in pure copper , Phil. Mag. A 80 (2000), pp. 2629–2650.
  • C.H. Woo and B.N. Singh , Production bias due to clustering of point defects in irradiation-induced cascades , Phil. Mag. A 65 (1992), pp. 889–912.
  • S.I. Golubov , B.N. Singh , and H. Trinkaus , On recoil-energy-dependent defect accumulation in pure copper Part II. Theoretical treatment , Phil. Mag. A 81 (2001), pp. 2533–2552.
  • D.J. Bacon , A.F. Calder , and F. Gao , Defect production due to displacement cascades in metals as revealed by computer simulation , J Nucl. Mater. 251 (1997), pp. 1–12.
  • D.J. Bacon and Y.N. Osetsky , Multiscale modelling of radiation damage in metals: From defect generation to material properties , Mater. Sci. Eng. A 365 (2004), pp. 46–56.
  • D.J. Bacon , Y.N. Osetsky , R. Stoller , and R.E. Voskoboinikov , MD description of damage production in displacement cascades in copper and alpha-iron , J. Nucl. Mater. 323 (2003), pp. 152–162.
  • M.J. Caturla , T.D. de la Rubia , M. Victoria , R.K. Corzine , M.R. James , and G.A. Greene , Multiscale modeling of radiation damage: Applications to damage production by GeV proton irradiation of Cu and W, and pulsed irradiation effects in Cu and Fe , J. Nucl. Mater. 296 (2001), pp. 90–100.
  • R. Schibli and R. Schaublin , On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels – A literature review , J. Nucl. Mater. 442 (2013), pp. S761–S767.
  • S.J. Zinkle , L.E. Seizman , and W.G. Wolfer , Stability of vacancy clusters in metals: I. energy calculations for pure metals , Phil. Mag. A 55 (1987), pp. 111–125.
  • Y.N. Osetsky , R.E. Stoller , D. Rodney , and D.J. Bacon , Atomic-scale details of dislocation-stacking fault tetrahedra interaction , Mater. Sci. Eng. A 400–401 (2005), pp. 370–373.
  • H.J. Lee and B.D. Wirth , Molecular dynamics simulation of the interaction between a mixed dislocation and a stacking fault tetrahedron , Phil. Mag. 89 (2009), pp. 821–841.
  • Y.N. Osetsky , D.J. Bacon , A. Serra , and B.N. Singh , Interactions between edge dislocations and interstitial clusters in iron and copper , MRS Proc. 653 (2001), p. Z3.4.
  • M.A. Puigvi , Y.N. Osetsky , and A. Serra , Point-defect clusters and dislocation loops in bcc metals: Continuum and atomistic study , Phil. Mag. 83 (2003), pp. 857–871.
  • Y.N. Osetsky and D.J. Bacon , Defect cluster formation in high energy displacement cascades in copper , Nucl. Instrum. Meth. Phys. Res. Sect. B 180 (2001), pp. 85–90.
  • R.E. Voskoboinikov , Y.N. Osetsky , and D.J. Bacon , Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics , J. Nucl. Mater. 377 (2008), pp. 385–395.
  • K. Nordlund and F. Gao , Formation of stacking-fault tetrahedra in collision cascade , Appl. Phys. Lett 74 (1999), pp. 2720–272.
  • K. Nordlund and R.S. Averback , Collision cascades in metals and semiconductors: Defect creation and interface behavior , J. Nucl. Mater. 276 (2000), pp. 194–201.
  • K. Nordlund and R.S. Averback , Point defect movement and annealing in collision cascades , Phys. Rev. B 56 (1997), pp. 2421–2431.
  • K. Nordlund , J. Tarus , J. Keinonen , M. Ghaly , and R.S. Averback , Heat spike effects on ion beam mixing , Nucl. Instrum. Meth. Phys. Res. Sect. B 164–165 (2000), pp. 441–452.
  • K. Nordlund , M. Ghaly , R.S. Averback , M. Caturla , T.D. de la Rubia , and J. Tarus , Defect production in collision cascades in elemental semiconductors and fcc metals , Phys. Rev. B 57 (1998), pp. 7556–7570.
  • M. Samaras , P.M. Derlet , H. Van Swygenhoven , and M. Victoria , Atomic scale modelling of the primary damage state of irradiated fcc and bcc nanocrystalline metals , J. Nucl. Mater. 351 (2006), pp. 47–55.
  • M. Samaras , P.M. Derlet , H. Van Swygenhoven , and M. Victoria , Computer simulation of displacement cascades in nanocrystalline Ni , Phys. Rev. Lett. 88 (2002), pp. 125505-1–125505-4.
  • A. Almazouzi , M.J. Caturla , M. Alurralde , T.D. de la Rubia , and M. Victoria , Defect production and damage evolution in Al: A molecular dynamics and Monte Carlo computer simulation , Nucl. Instrum. Meth. Phys. Res. Sect. B 153 (1999), pp. 105–115.
  • R.E. Voskoboinikov , MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium , Nucl. Instrum. Meth. Phys. Res. Sect. B 303 (2013), pp. 104–107.
  • R.E. Voskoboinikov , Interaction of collision cascades with an isolated edge dislocation in aluminium , Nucl. Instrum. Meth. Phys. Res. Sect. B 303 (2013), pp. 125–128.
  • Z. Yao , M.J. Caturla , and R. Schaublin , Study of cascades damage in Ni by MD with different interatomic potentials , J. Nucl. Mater. 367–370 (2007), pp. 298–304.
  • C. Wang , W. Zhang , C. Ren , P. Huai , and Z. Zhu , The effect of temperature on primary defect formation in Ni–Fe alloy , Nucl. Instrum. Meth. Phys. Res. Sect. B 321 (2014), pp. 49–53.
  • X. Li and A. Almazouzi , Deformation and microstructure of neutron irradiated stainless steels with different stacking fault energy , J. Nucl. Mater. 385 (2009), pp. 329–333.
  • G.J. Ackland , G. Tichy , V. Vitek , and M.W. Finnis , Simple N-body potentials for the noble metals and nickel , Phil. Mag. A 56 (1987), pp. 735–756.
  • V. Borovikov , M.I. Mendelev , A.H. King , and R. Lesar , Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals , MSMSE 23 (2015), pp. 055003-1–055003-16.
  • M.I. Mendelev and A.H. King , The interactions of self-interstitials with twin boundaries , Phil. Mag. 93 (2013), pp. 1268–1278.
  • J.F. Ziegler , J.P. Biersack , and U. Littmark , The stopping and range of ions in solids , Vol. 1, Pergamon, New York, NY , 1985.
  • H. Deng and D.J. Bacon , Simulation of point defects and threshold displacements in pure Cu and a dilute Cu–Au alloy , Phys. Rev. B 48 (1993), pp. 10022–10030.
  • B.S. Thomas , N.A. Marks , L.R. Corrales , and R. Devanathan , Threshold displacement energies in rutile TiO2: A molecular dynamics simulation study , Nucl. Instrum. Meth. Phys. Res. Sect. B 239 (2005), pp. 191–201.
  • K. Nordlund , J. Wallenius , and L. Malerba , Molecular dynamics simulations of threshold displacement energies in Fe , Nucl. Instrum. Meth. Phys. Res. Sect. B 246 (2006), pp. 322–332.
  • M. Robinson , M.A. Marks , K.R. Whittle , and G.R. Lumpkin , Systematic calculation of threshold displacement energies: Case study in rutile , Phys. Rev. B 85 (2012), pp. 104105-1–104105-11.
  • LAMMPS Molecular Dynamics Simulator . Software available at http://lammps.sandia.gov/.
  • S. Miyashiro , S. Fujita , and T. Okita , Md simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure cu , J. Nucl. Mater. 415 (2011), pp. 1–4.
  • S. Miyashiro , S. Fujita , T. Okita , and H. Okuda , MD simulations to evaluate effects of applied tensile strain on irradiation-induced defect production at various PKA energies , Fusion Eng. Des. 87 (2012), pp. 1352–1355.
  • J.D. Honeycutt and H.C. Andersen , Molecular dynamics study of melting and freezing of small Lennard–Jones clusters , J. Phys. Chem. 91 (1987), pp. 4950–4963.
  • D. Fakan and H. Jonsson , Systematic analysis of local atomic structure combined with 3D computer graphics , Comput. Mater. Sci. 2 (1994), pp. 279–286.
  • M.J. Norgett , M.T. Robinson , and I.M. Torrens , A proposed method of calculating displacement dose rates , Nucl. Eng. Des. 33 (1975), pp. 50–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.