822
Views
28
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Structural, electronic and optical properties of Cu-doped ZnO: experimental and theoretical investigation

, , &
Pages 1743-1756 | Received 21 Dec 2015, Accepted 30 Mar 2016, Published online: 06 May 2016

References

  • D.C. Look, D.C. Reynolds, J.W. Hemsky, R.L. Jones, and J.R. Sizelove, Production and annealing of electron irradiation damage in ZnO, Appl. Phys. Lett. 75 (1999), pp. 811–813.
  • M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001), pp. 1897–1899.
  • D.C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng.: B 80 (2001), pp. 383–387.
  • Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005), p. 041301 (103p).
  • H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Willey-VCH, Germany, 2009, pp. 245–275.
  • Ü. Özgür, D. Hofstetter, and H. Morkoç, ZnO devices and applications: A review of current status and future prospects, Proc. IEEE 98 (2010), pp. 1255–1268.
  • Q.A. Xu, J.W. Zhang, K.R. Ju, X.D. Yang, and X. Hou, ZnO thin film photoconductive ultraviolet detector with fast photoresponse, J. Cryst. Growth 289 (2006), pp. 44–47.
  • R. Romero, M.C. López, D. Leinen, F. Martín, and J.R. Ramos-Barrado, Electrical properties of the n-ZnO/c-Si heterojunction prepared by chemical spray pyrolysis, Mater. Sci. Eng.: B 110 (2004), pp. 87–93.
  • R. Ghosh and D. Basak, Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction, Appl. Phys. Lett. 90 (2007), p. 243106 (3p).
  • W. Dewald, V. Sittinger, W. Werner, C. Jacobs, and B. Szyszka, Optimization of process parameters for sputtering of ceramic ZnO:Al2O3 targets for a-Si:H/µc-Si: H solar cells, Thin Solid Films 518 (2009), pp. 1085–1090.
  • I.E. Titkov, L.A. Delimova, A.S. Zubrilov, N.V. Seredova, I.A. Liniichuk, and I.V. Grekhov, 12 ZnO/GaN heterostructure for LED applications, J. Mod. Opt. 56 (2009), pp. 653–660.
  • S.-H. Nam, M.-H. Kim, D.G. Yoo, S.H. Jeong, D.Y. Kim, N.-E. Lee, and J.-H. Boo, Metal-doped ZnO thin films: Synthesis, etching characteristic, and application test for organic light emitting diode (oled) devices, Surf. Rev. Lett. 17 (2010), pp. 121–127.
  • R. Khan, H.-W. Ra, J.T. Kim, W.S. Jang, D. Sharma, and Y.H. Im, Nanojunction effects in multiple ZnO nanowire gas sensor, Sens. Actuators B 150 (2010), pp. 389–393.
  • M. Ortel and V. Wagner, Leidenfrost temperature related CVD-like growth mechanism in ZnO-TFTs deposited by pulsed spray pyrolysis, J. Cryst. Growth 363 (2013), pp. 185–189.
  • S. Sharma and C. Periasamy, A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique, Superlattices Microstruct. 73 (2014), pp. 12–21.
  • M.R. Wagner, G. Callsen, J.S. Reparaz, R. Kirste, A. Hoffmann, A.V. Rodina, A. Schleife, F. Bechstedt, and M.R. Phillips, Effects of strain on the valence band structure and excitonpolariton energies in ZnO, Phys. Rev. B 88 (2013), p. 235210 (15p).
  • T.-B. Hur, Y.-H. Hwang, H.-K. Kim, and I.J. Lee, Strain effects in ZnO thin films and nanoparticles, J. Appl. Phys. 99 (2006), p. 064308 (5p).
  • S.M. Salaken, E. Farzana, and J. Podder, Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis, J. Semicond. 34 (2013), p. 073003 (6p).
  • C. Hirose, Y. Matsumoto, Y. Yamamoto, and H. Koinuma, Electric field effect in pulsed laser deposition of epitaxial ZnO thin film, Appl. Phys. A 79 (2004), pp. 807–809.
  • Z. Zhan, Y. Wang, Z. Lin, J. Zhang, and F. Huang, Study of interface electric field affecting the photocatalysis of ZnO, Chem. Commun. 47 (2011), pp. 4517–4519.
  • S. Palimar, K.V. Bangera, and G.K. Shivakumar, Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide, Appl. Nanosci. 3 (2013), pp. 549–553.
  • Y.-S. Kim and W.-P. Tai, Electrical and optical properties of Al-doped ZnO thin films by sol-gel process, Appl. Surf. Sci. 253 (2007), pp. 4911–4916.
  • T. Prabhakar, L. Dai, L. Zhang, R. Yang, L. Li, T. Guo, and Y. Yan, Effects of growth process on the optical and electrical properties in Al-doped ZnO thin films, J. Appl. Phys. 115 (2014), p. 083702 (7p).
  • Y. Wang, W. Tang, J. Liu, and L. Zhang, Stress-induced anomalous shift of optical band gap in Ga-doped ZnO thin films: Experimental and first-principles study, Appl. Phys. Lett. 106(13) (2015), p. 162101 (4p).
  • P. Prunici, F.U. Hamelmann, W. Beyer, H. Kurz, and H. Stiebig, Modelling of infrared optical constants for polycrystalline low pressure chemical vapour deposition ZnO: B films, J. Appl. Phys. 113 (2013), p. 123104 (9p).
  • R. Siddheswaran, M. Netrvalová, J. Savková, P. Nov{\’a}k, J. O\xu{c}en{\’a}\v{s}ek, P. {\v{S}}utta, J. Kov{\’a}\xu{c} Jr., and R. Jayavel Jr., Reactive magnetron sputtering of Ni doped ZnO thin film: Investigation of optical, structural, mechanical and magnetic properties, J. Alloys Compd. 636 (2015), pp. 85–92.
  • T. Serin, A. Yildiz, Ş. Uzun, E. \c{C}am, and N. Serin, Electrical conduction properties of In-doped ZnO thin films, Phys. Scr. 84 (2011), p. 065703 (6p).
  • C.-H. Hsu, L.-C. Chen, and X. Zhang, Effect of the Cu Source on Optical Properties of CuZnO Films Deposited by Ultrasonic Spraying, Materials 7 (2014), pp. 1261–1270.
  • Q.A. Drmosh, S.G. Rao, Z.H. Yamani, and M.A. Gondal, Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization, Appl. Surf. Sci. 270 (2013), pp. 104–108.
  • L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B.R. Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, and A. Schulte, Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response, Sens. Actuators A 189 (2013), pp. 399–408.
  • M. Suja, S.B. Bashar, M.M. Morshed, and J. Liu, Realization of Cu-doped p-type ZnO thin films by molecular beam epitaxy, ACS Appl. Mater. Interfaces 7 (2015), pp. 8894–8899.
  • S.C. Das, R.J. Green, J. Podder, T.Z. Regier, G.S. Chang, and A. Moewes, Band gap tuning in ZnO through Ni doping via spray pyrolysis, J. Phys. Chem. C 117 (2013), pp. 12745–12753.
  • J.A. McLeod, D.W. Boukhvalov, D.A. Zatsepin, R.J. Green, B. Leedahl, L. Cui, E.Z. Kurmaev, I.S. Zhidkov, L.D. Finkelstein, N.V. Gavrilov, S.O. Cholakh, and A. Moewes, Local structure of Fe impurity atoms in ZnO: Bulk versus surface, J. Phys. Chem. C 118 (2014), pp. 5336–5345.
  • B. Leedahl, D.A. Zatsepin, D.W. Boukhvalov, E.Z. Kurmaev, R.J. Green, I.S. Zhidkov, S.S. Kim, L. Cui, N.V. Gavrilov, S.O. Cholakh, and A. Moewes, Study of the structural characteristics of 3d metals Cr, Mn, Fe Co, Ni, and Cu implanted in ZnO and TiO2-experiment and theory, J. Phys. Chem. C 118 (2014), pp. 28143–28151.
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953–17979.
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(14) (1993), pp. 558–561.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • R.F.W. Bader, Atoms in Molecules -- A Quantum Theory, Oxford University Press, Oxford, 1990.
  • M. Usuda, N. Hamada, T. Kotani, and M. van Schilfgaarde, All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO, Phys. Rev. B 66 (2002), p. 125101 (8p).
  • B.-C. Shih, Y. Xue, P. Zhang, M.L. Cohen, and S.G. Louie, Quasiparticle band gap of ZnO: High accuracy from the conventional G0W0 approach, Phys. Rev. Lett. 105 (2010), p. 146401 (4p).
  • L.-H. Ye, A.J. Freeman, and B. Delley, Half-metallic ferromagnetism in Cu-doped ZnO: Density functional calculations, Phys. Rev. B 73 (2006), p. 033203 (4p).
  • A.N. Andriotis and M. Menon, Defect-induced magnetism: Codoping and a prescription for enhanced magnetism, Phys. Rev. B 87 (2013), p. 155309 (9p).
  • A.N. Andriotis and M. Menon, The synergistic character of the defect-induced magnetism in diluted magnetic semiconductors and related magnetic materials, J. Phys.: Condens. Matter 24 (2012), p. 455801 (5p).
  • A.N. Andriotis, Z.G. Fthenakis, and M. Menon, Successive spin polarizations underlying a new magnetic coupling contribution in diluted magnetic semiconductors, J. Phys.: Condens. Matter 27 (2015), p. 052202 (7p).
  • R.J. Green, G.S. Chang, X.Y. Zhang, A. Dinia, E.Z. Kurmaev, and A. Moewes, Identifying local dopant structures and their impact on the magnetic properties of spintronic materials, Phys. Rev. B 83 (2011), p. 115207 (6p).
  • T. Ghosh, M. Dutta, S. Mridha, and D. Basak, Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of sol-gel ZnO thin films semiconductor devices, materials, and processing, J. Electrochem. Soc. 156 (2009), pp. H285–H289.
  • N.-E. Sung, S.-W. Kang, H.-J. Shin, H.-K. Lee, and I.-J. Lee, Cu doping effects on the electronic and optical properties of Cu-doped ZnO thin films fabricated by radio frequency sputtering, Thin Solid Films 547 (2013), pp. 285–289.
  • R. Swanepoel, Determination of the thickness and optical constant of amorphous silicon, J. Phys. E. Sci. Instrum 16 (1983), pp. 1214–1222.
  • J. Tauc, Absorption edge and internal electric fields in amorphous semiconductors, Mater. Res. Bull. 5 (1970), pp. 721–729.
  • N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, Clarendon Press, Oxford, 1971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.