385
Views
17
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles characterisation of the pressure-dependent elastic anisotropy of SnO2 polymorphs

, , &
Pages 1861-1882 | Received 04 Nov 2015, Accepted 03 Apr 2016, Published online: 08 May 2016

References

  • Z.M. Jarzebski and J.P. Marton, Physical properties of SnO2 materials, J. Electrochem. Soc. 123 (1976),- I. Preparation and Defect Structure, pp.199C–205C; II. Electrical Properties, pp. 299C–310C; III. Optical Properties, pp. 333C–346C.
  • M. Batzill and U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci. 79 (2005), pp. 47–154.10.1016/j.progsurf.2005.09.002
  • M.J. Madou and S.R. Moriso, Chemical Sensing with Solid State Devices, Academic. Press, San Diego, CA, 1989.
  • G.E. Patil, D.D. Kajale, V.B. Gaikwad, and G.H. Jain, Preparation and characterization of SnO2 nanoparticles by hydrothermal route, Int. Nano Lett. 2 (2012), pp. 1–5.10.1186/2228-5326-2-17
  • A. Art, Migdisov and A. E. Williams-Jones, An experimental study of cassiterite solubility in HCl-bearing water vapour at temperatures up to 350˚C. Implications for tin ore formation, Chem. Geol. 217 (2005), pp. 29–40.
  • C.-M. Liu, X.-R. Chen, and G.-F. Ji, First-principles investigations on structural, elastic and electronic properties of SnO2 under pressure, Comput. Mater. Sci. 50 (2011), pp. 1571–1577.10.1016/j.commatsci.2010.12.018
  • L. Gracia, A. Beltrán, and J. Andrés, Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study, J. Phys. Chem. B 111 (2007), pp. 6479–6485.10.1021/jp067443v
  • J. Haines and J.M. Léger, X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: Relationships between structure types and implications for other rutile-type dioxides, Phys. Rev. B 55 (1997), pp. 11144–11154.10.1103/PhysRevB.55.11144
  • B. Zhu, C.-M. Liu, and M.B. Lv, X.R. Chen, J. Zhu, AND G.-F. Ji, Structures, phase transition, elastic properties of SnO2 from first-principles analysis, Physica B 406 (2011), pp. 3508–3513.10.1016/j.physb.2011.06.036
  • Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, X. Zhao, J. Hao, and M. Jiang, Optical properties of the high-pressure phases of SnO2: First-principles calculations, Phys. Chem. A 114 (2010), pp. 1052–1059.10.1021/jp909021r
  • J.Z. Jiang, L. Gerward, and J.S. Olsen, Pressure induced phase transformation in nanocrystal SnO2, Scr. Mater. 44 (2001), pp. 1983–1986.10.1016/S1359-6462(01)00819-3
  • E. Deligoz, K. Colakoglu, and Y.O. Ciftci, The structural, elastic, and electronic properties of the pyrite-type phase for SnO2, J. Phys. Chem. Solids 69 (2008), pp. 859–864.10.1016/j.jpcs.2007.09.019
  • F.E.H. Hassan, S. Moussawi, W. Noun, C. Salameh, and A.V. Postnikov, Theoretical calculations of the high-pressure phases of SnO2, Comput. Mater. Sci. 72 (2013), pp. 86–92.10.1016/j.commatsci.2013.02.011
  • K. Suito, N. Kawai, and Y. Masuda, High pressure synthesis of orthorhombic SnO2, Mater. Res. Bull. 10 (1975), pp. 677–680.10.1016/0025-5408(75)90050-1
  • H. Hellwig, A.F. Goncharov, E. Gregoryanz, H.K. Mao, and R.J. Hemley, Brillouin and Raman spectroscopy of the ferroelastic rutile-to-CaCl2 transition in SnO2 at high pressure, Phys. Rev. B 67 (2003), pp. 174110(1–7).
  • E. Chang and E.K. Graham, The elastic constants of cassiterite SnO2 and their pressure and temperature dependence, J. Geophys. Res. 80 (1975), pp. 2595–2599.10.1029/JB080i017p02595
  • R.A. Casali, J. Lasave, M.A. Caravaca, S. Koval, C.A. Ponce, and R.L. Migoni, Ab initio and shell model studies of structural, thermoelastic and vibrational properties of SnO2 under pressure, J. Phys.: Condens. Matter. 25 (2013), pp. 135404(1–11).
  • M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, and J.D. Joannopouios, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992), pp. 1045–1097.10.1103/RevModPhys.64.1045
  • Y. Wang and J.P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling, Phys. Rev. B 44 (1991), pp. 13298–13307.10.1103/PhysRevB.44.13298
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.10.1103/PhysRevB.13.5188
  • B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen, Relaxation of crystals with Quasi-Newton method, J. Comput. Phys. 131 (1997), pp. 233–240.10.1006/jcph.1996.5612
  • P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johnnsson, J. Wills, and O. Eriksson, Density functional theory for calcualktion of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904.10.1063/1.368733
  • F.D. Murnaghan, The Compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30 (1994), pp. 244–247.
  • J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Mechanical instabilities of homogeneous crystals, Phys. Rev. B 52 (1995), pp. 12627–12635.10.1103/PhysRevB.52.12627
  • D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, NY, 1972.
  • B.B. Karki, G.J. Ackland, and J. Crain, Elastic instabilities in crystal from ab initio stress–strain relations, J. Phys.: Condens. Matter 9 (1997), pp. 8579–8589.
  • E. Deligoz, H. Ozisik, and K. Colakoglu, Theoretical predictions of the structural, mechanical and lattice dynamical properties of XW2 (X = Zr, Hf) laves phases, Philos. Mag. 94 (2014), pp. 1379–1392.10.1080/14786435.2014.886024
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc., Sect. A 65 (1952), pp. 349–354.10.1088/0370-1298/65/5/307
  • S.F. Pugh, Relations between the elastic moduli and plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843.10.1080/14786440808520496
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), pp. 055504(1–4).
  • U.F. Ozyar, E. Deligoz, and K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds, Solid State Sci. 40 (2015), pp. 92–100.10.1016/j.solidstatesciences.2015.01.001
  • Z.J. Min, Z. Yan, X.K. Wei, and J. Vincent, Young’s modulus surface and poisson’s ratio curve for tetragonal crystals*, Chin. Phys. B 17 (2008), pp. 1565–1573.
  • K. Reimann and M. Steube, Experimental determination of the electronic band structure of SnO2, Solid State Commun. 105 (1998), pp. 649–652.10.1016/S0038-1098(97)10151-X
  • J.L. Jacquemin, C. Alibert, and G. Bordure, Electronic energy band calculations in SnO2, Solid State Commun. 10 (1972), pp. 1295–1298.10.1016/0038-1098(72)90963-5
  • Q.J. Liu, Z.T. Liu, and L.P. Feng, First-principles calculations of structural, electronic and optical properties of tetragonal SnO2 and SnO, Comput. Mater. Sci. 47 (2010), pp. 1016–1022.10.1016/j.commatsci.2009.11.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.