4,038
Views
92
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Stored energy in metallic glasses due to strains within the elastic limit

&
Pages 1643-1663 | Received 07 Jan 2016, Accepted 04 Apr 2016, Published online: 02 May 2016

References

  • A.L. Greer, Y.Q. Cheng, and E. Ma, Shear bands in metallic glasses, Mater. Sci. Eng. R 74 (2013), pp. 71–132.10.1016/j.mser.2013.04.001
  • J. Xu and E. Ma, Damage-tolerant Zr–Cu–Al-based bulk metallic glasses with record-breaking fracture toughness, J. Mater. Res. 29 (2014), pp. 1489–1499.10.1557/jmr.2014.160
  • M. Wakeda, J. Saida, J. Li, and S. Ogata, Controlled rejuvenation of amorphous metals with thermal processing, Sci. Reports 5 (2015), Article ID 10545.10.1038/srep10545
  • H.S. Chen, Stored energy in a cold-rolled metallic glass, Appl. Phys. Lett. 29 (1976), pp. 328–330.10.1063/1.89084
  • B. Jessen and E. Woldt, Stored energy of the deformed metallic glass Ni78Si8B14, Thermochim. Acta 151 (1989), pp. 179–186.10.1016/0040-6031(89)85347-X
  • J.W. Liu, Q.P. Cao, L.Y. Chen, X.D. Wang, and J.Z. Jiang, Shear band evolution and hardness change in cold-rolled bulk metallic glasses, Acta Mater. 58 (2010), pp. 4827–4840.10.1016/j.actamat.2010.05.018
  • F. Meng, K. Tsuchiya, S. Ii, and Y. Yokoyama, Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass, Appl. Phys. Lett. 101 (2012), Article ID 121914.10.1063/1.4753998
  • O. Haruyama, K. Kisara, A. Yamashita, K. Kogure, Y. Yokoyama, and K. Sugiyama, Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses, Acta Mater. 61 (2013), pp. 3224–3232.10.1016/j.actamat.2013.02.010
  • D.J. Magagnosc, G. Kumar, J. Schroers, P. Felfer, J.M. Cairney, and D.S. Gianola, Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires, Acta Mater. 74 (2014), pp. 165–182.10.1016/j.actamat.2014.04.002
  • R.E. Baumer and M.J. Demkowicz, Radiation response of amorphous metal alloys: Subcascades, thermal spikes and super-quenched zones, Acta Mater. 83 (2015), pp. 419–430.10.1016/j.actamat.2014.10.020
  • S. Takayama, Drawing of Pd77.5Cu6Si16.5 metallic glass wires, Mater. Sci. Eng. 38 (1979), pp. 41–48.10.1016/0025-5416(79)90030-2
  • Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, and A. Inoue, Ductility improvement of Zr55Cu30Al10Ni5 bulk amorphous alloy, Scripta Mater. 44 (2001), pp. 1529–1533.10.1016/S1359-6462(01)00723-0
  • L. He, M.B. Zhong, Z.H. Han, Q. Zhao, F. Jiang, and J. Sun, Orientation effect of pre-introduced shear bands in a bulk-metallic glass on its “work-ductilising”, Mater. Sci. Eng. A 496 (2008), pp. 285–290.10.1016/j.msea.2008.05.038
  • S. Scudino, B. Jerliu, K.B. Surreddi, U. Kühn, and J. Eckert, Effect of cold rolling on compressive and tensile mechanical properties of Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass, J. Alloys Comp. 509 (2011), pp. S128–S130.10.1016/j.jallcom.2011.01.022
  • R. Gerling, F.P. Schimansky, and R. Wagner, Restoration of the ductility of thermally embrittled amorphous alloys under neutron-irradiation, Acta Metall. 35 (1987), pp. 1001–1006.10.1016/0001-6160(87)90047-2
  • R. Raghavan, K. Boopathy, R. Ghisleni, M.A. Pouchon, U. Ramamurty, and J. Michler, Ion irradiation enhances the mechanical performance of metallic glasses, Scripta Mater. 62 (2010), pp. 462–465.10.1016/j.scriptamat.2009.12.013
  • Y. Wang, W. Zhao, G. Li, Y. Li, and R. Liu, Structural evolution of lanthanide-based metallic glasses under high pressure annealing, J. Alloys Comp. 551 (2013), pp. 185–188.10.1016/j.jallcom.2012.10.022
  • S.-J. Lee, B.-G. Yoo, J.-I. Jang, and J.-C. Lee, Irreversible structural change induced by elastostatic stress imposed on an amorphous alloy and its influence on the mechanical properties, Metal. Mater. Int. 14 (2008), pp. 9–13.10.3365/met.mat.2008.02.009
  • S.-C. Lee, C.-M. Lee, J.-W. Yang, and J.-C. Lee, Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties, Scripta Mater. 58 (2008), pp. 591–594.10.1016/j.scriptamat.2007.11.036
  • S.-C. Lee, C.-M. Lee, J.-C. Lee, H.-J. Kim, Y. Shibutani, E. Fleury, and M.L. Falk, Structural disordering process of an amorphous alloy driven by the elastostatic compression at room temperature, Appl. Phys. Lett. 92 (2008), Article ID 151906.10.1063/1.2908218
  • K.-W. Park, C.-M. Lee, M. Wakeda, Y. Shibutani, E. Fleury, and J.-C. Lee, Homogeneous deformation of bulk amorphous alloys during elastostatic compression and its packing density dependence, Scripta Mater. 59 (2008), pp. 710–713.10.1016/j.scriptamat.2008.05.033
  • K.-W. Park, C.-M. Lee, M. Wakeda, Y. Shibutani, M.L. Falk, and J.-C. Lee, Elastostatically induced structural disordering in amorphous alloys, Acta Mater. 56 (2008), pp. 5440–5450.10.1016/j.actamat.2008.07.033
  • K.-W. Park, C.-M. Lee, M.-R. Lee, E. Fleury, M.L. Falk, and J.-C. Lee, Paradoxical phenomena between the homogeneous and inhomogeneous deformations of metallic glasses, Appl. Phys. Lett. 94 (2009), Article ID 021907.10.1063/1.3064920
  • J.-C. Lee, Calorimetric study of β-relaxation in an amorphous alloy: an experimental technique for measuring the activation energy for shear transformation, Intermetallics 44 (2014), pp. 116–120.10.1016/j.intermet.2013.09.002
  • H.B. Ke, P. Wen, H.L. Peng, W.H. Wang, and A.L. Greer, Homogeneous deformation of metallic glass at room temperature reveals large dilatation, Scripta Mater. 64 (2011), pp. 966–969.10.1016/j.scriptamat.2011.01.047
  • S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer, Rejuvenation of metallic glasses by non-affine thermal strain, Nature 524 (2015), pp. 200–203.10.1038/nature14674
  • T.C. Hufnagel, Cryogenic rejuvenation, Nature Mater. 14 (2015), pp. 867–868.10.1038/nmat4394
  • F.O. Méar, B. Lenk, Y. Zhang, and A.L. Greer, Structural relaxation in a heavily cold-worked metallic glass, Scripta Mater. 59 (2008), pp. 1243–1246.10.1016/j.scriptamat.2008.08.023
  • M.B. Bever, D.L. Holt, and A.L. Titchener, The stored energy of cold work, Prog. Mater. Sci. 17 (1972), pp. 5–177.
  • Y.H. Sun, A. Concustell, and A.L. Greer, Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nature Rev. Mater. accepted for publication.
  • L. Battezzati, G. Riontino, M. Baricco, A. Lucci, and F. Marino, A DSC study of structural relaxation in metallic glasses prepared with different quenching rates, J. Non-Cryst. Solids 61–62 (1984), pp. 877–882.10.1016/0022-3093(84)90653-7
  • A. Concustell, F.O. Méar, S. Suriñach, M.D. Baró, and A.L. Greer, Structural relaxation and rejuvenation in a metallic glass induced by shot-peening, Philos. Mag. Lett. 89 (2009), pp. 831–840.10.1080/09500830903337919
  • S.C. Glade, R. Busch, D.S. Lee, W.L. Johnson, R.K. Wunderlich, and H.J. Fecht, Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys, J. Appl. Phys. 87 (2000), pp. 7242–7248.10.1063/1.372975
  • I. Gallino, J. Schroers, and R. Busch, Kinetic and thermodynamic studies of the fragility of bulk metallic glass forming liquids, J. Appl. Phys. 108 (2010), Article ID 063501.10.1063/1.3480805
  • L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S.X. Mao, Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature 512 (2014), pp. 177–180.10.1038/nature13617
  • M.D. Ediger and P. Harrowell, Perspective: Supercooled liquids and glasses, J. Chem. Phys. 137 (2012), Article ID 080901.10.1063/1.4747326
  • R. Bhowmick, R. Raghavan, K. Chattopadhyay, and U. Ramamurty, Plastic flow softening in a bulk metallic glass, Acta Mater. 54 (2006), pp. 4221–4228.10.1016/j.actamat.2006.05.011
  • K.M. Flores, E. Sherer, A. Bharathula, H. Chen, and Y.C. Jean, Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation, Acta Mater. 55 (2007), pp. 3403–3411.10.1016/j.actamat.2007.01.040
  • S.G. Zaichenko, N.S. Perov, A.M. Glezer, E.A. Gan’shina, V.A. Kachalov, M. Calvo-Dalborg, and U. Dalborg, Low-temperature irreversible structural relaxation of amorphous metallic alloys, J. Magn. Magn. Mater. 215–216 (2000), pp. 297–299.10.1016/S0304-8853(00)00138-4
  • S.G. Zaichenko and A.M. Glezer, Physical model of the low-temperature-induced change in the structure and properties of amorphous alloys, Doklady Phys. 47 (2002), pp. 846–848.10.1134/1.1536212
  • K. Bán, A. Lovas, L. Novák, and K. Csach, The influence of low temperature treatments on the H solubility and the Curie temperature of Fe-B based glasses, Czech. J. Phys. 54 (2004), pp. D137–D140.10.1007/s10582-004-0048-9
  • K. Bán, A. Lovas, and J. Kováč, Cryogenic effects in the amorphous Curie temperature shift of Fe-based glassy alloys, Czech. J. Phys. 54 (2004), pp. D141–D144.10.1007/s10582-004-0049-8
  • H.S. Chen and E. Coleman, Structure relaxation spectrum of metallic glasses, Appl. Phys. Lett. 28 (1976), pp. 245–247.10.1063/1.88725
  • H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957), pp. 1702–1706.10.1021/ac60131a045
  • H.B. Yu, W.H. Wang, and K. Samwer, The β relaxation in metallic glasses: An overview, Mater. Today 16 (2013), pp. 183–191.10.1016/j.mattod.2013.05.002
  • G.P. Johari and M. Goldstein, Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules, J. Chem. Phys. 53 (1970), pp. 2372–2388.10.1063/1.1674335
  • H.B. Yu, X. Shen, Z. Wang, L. Gu, W.H. Wang, and H.Y. Bai, Tensile plasticity in metallic glasses with pronounced β relaxations, Phys. Rev. Lett. 108 (2012), Article ID 015504.10.1103/PhysRevLett.108.015504
  • X.D. Wang, Q.P. Cao, J.Z. Jiang, H. Franz, J. Schroers, R.Z. Valiev, Y. Ivanisenko, H. Gleiter, and H.-J. Fecht, Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses, Scripta Mater. 64 (2011), pp. 81–84.10.1016/j.scriptamat.2010.09.015
  • S. Butler and P. Harrowell, The shear induced disordering transition in a colloidal crystal: Nonequilibrium Brownian dynamic simulations, J. Chem. Phys. 103 (1995), pp. 4653–4671.10.1063/1.470653
  • H. Löwen, Colloidal soft matter under external control, J. Phys. Condens. Matter 13 (2001), pp. R415–R432.10.1088/0953-8984/13/24/201
  • C.-M. Lee, K.-W. Park, B.-J. Lee, Y. Shibutani, and J.-C. Lee, Structural disordering of amorphous alloys: A molecular dynamics analysis, Scripta Mater. 61 (2009), pp. 911–914.10.1016/j.scriptamat.2009.07.032
  • W. Thomson, On the thermo-elastic and thermo-magnetic properties of matter, Quart. J. Pure Appl. Math. 1 (1857), pp. 57–74.
  • W. Thomson, On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. Philos. Mag. Ser. 5, 5:28 (1878), pp. 4–27. doi:10.1080/1478644780863937810.1080/14786447808639378
  • X. Moya, S. Kar-Narayan, and N.D. Mathur, Caloric materials near ferroic phase transitions, Nature Mater. 13 (2014), pp. 439–450.10.1038/nmat3951
  • T.C. Hufnagel, R.T. Ott, and J. Almer, Structural aspects of elastic deformation of a metallic glass, Phys. Rev. B 73 (2006), Article ID 064204.10.1103/PhysRevB.73.064204
  • T. Egami, T. Iwashita, and W. Dmowski, Mechanical properties of metallic glasses, Metals 3 (2013), pp. 77–113.
  • Y. Luo, Q.-K. Li, and M. Li, Mechanical anisotropy at the nanoscale in amorphous solids, J. Appl. Phys. 117 (2015), Article ID 044301.10.1063/1.4906408
  • T. Egami and D. Srolovitz, Local structural fluctuations in amorphous and liquid metals: a simple theory of the glass transition, J. Phys. F: Met. Phys. 12 (1982), pp. 2141–2163.10.1088/0305-4608/12/10/010
  • F. Albano and M.L. Falk, Shear softening and structure in a simulated three-dimensional binary glass, J. Chem. Phys. 122 (2005), Article ID 154508.10.1063/1.1885000
  • J.C. Ye, J. Lu, C.T. Liu, Q. Wang, and Y. Yang, Atomistic free-volume zones and inelastic deformation of metallic glasses, Nature Mater. 9 (2010), pp. 619–623.10.1038/nmat2802
  • D. Weaire, M.F. Ashby, J. Logan, and M.J. Weins, On the use of pair potentials to calculate the properties of amorphous metals, Acta Metall. 19 (1971), pp. 779–788.10.1016/0001-6160(71)90134-9
  • A.H. Taghvaei, H. Shakur Shahabi, J. Bednarčik, and J. Eckert, Inhomogeneous thermal expansion of metallic glasses in atomic-scale studied by in situ synchrotron X-ray diffraction, J. Appl. Phys. 117 (2015), Article ID 044902.10.1063/1.4906552
  • E. Grüneisen, Theorie des festen Zustandes ein-atomiger Element, Ann. Physik 39 (1912), pp. 257–306.10.1002/(ISSN)1521-3889
  • M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem. 51 (2000), pp. 99–128.10.1146/annurev.physchem.51.1.99
  • A.S. Argon, Plastic deformation in metallic glasses, Acta Metall. 27 (1979), pp. 47–58.10.1016/0001-6160(79)90055-5
  • J. Pan, Q. Chen, L. Liu, and Y. Li, Softening and dilatation in a single shear band, Acta Mater. 59 (2011), pp. 5146–5158.10.1016/j.actamat.2011.04.047