164
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Quasi-static response and texture evolution of α- and γ-RDX: a comparative study

, &
Pages 1790-1808 | Received 28 Oct 2015, Accepted 10 Apr 2016, Published online: 05 May 2016

References

  • R.W. Armstrong, H.L. Ammon, W.L. Elban, and D.H. Tsai, Investigation of hot spot characteristics in energetic crystals, Thermochimica Acta 384 (2002), pp. 303–313.10.1016/S0040-6031(01)00786-9
  • Z.A. Dreger and Y.M. Gupta, Decomposition of γ-Cyclotrimethylene Trinitramine (γ-RDX): relevance for shock wave initiation, The Journal of Physical Chemistry A 116 (2012), pp. 8713–8717.10.1021/jp306589h
  • T.D. Sewell and C.M. Bennett, Monte Carlo calculations of the elastic moduli and pressure-volume-temperature equation of state for hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, Journal of Applied Physics 88 (2000), pp. 88–95.10.1063/1.373628
  • L.B. Munday, P.W. Chung, B.M. Rice, and S.D. Solares, Simulations of high-pressure phases in RDX, The Journal of Physical Chemistry B 115 (2011), pp. 4378–4386.10.1021/jp112042a
  • K. Josyula, Rahul, and S. De, Thermomechanical properties and equation of state for the γ-polymorph of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, RSC Adv. 4 (2014), pp. 41491–41499.
  • M.J. Cawkwell, K.J. Ramos, D.E. Hooks, and T.D. Sewell, Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading, Journal of Applied Physics 107 (2010), p. 063512.10.1063/1.3305630
  • M.J. Cawkwell, T.D. Sewell, L. Zheng, and D.L. Thompson, Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations, Physical Review B 78 (2008), p. 014107.10.1103/PhysRevB.78.014107
  • Q. An, Y. Liu, S.V. Zybin, H. Kim, and W.A. Goddard III, Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics, The Journal of Physical Chemistry C 116 (2012), pp. 10198–10206.10.1021/jp300711m
  • J.D. Clayton, and R. Becker, Elastic-plastic behavior of cyclotrimethylene trinitramine single crystals under spherical indentation: Modeling and simulation, Journal of Applied Physics 111 (2012), p. 063512.10.1063/1.3695392
  • S. De, Rahul, and A.R. Zamiri, A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX, J. Mech. Phys. Solids 64 (2013), pp. 287–301.
  • J.E. Patterson, Z.A. Dreger, and Y.M. Gupta, Shock wave-induced phase transition in RDX single crystals, The Journal of Physical Chemistry B 111 (2007), pp. 10897–10904.10.1021/jp079502q
  • N.C. Dang, Z.A. Dreger, Y.M. Gupta, and D.E. Hooks, Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals: Anisotropic response, The Journal of Physical Chemistry A 114 (2010), pp. 11560–11566.10.1021/jp106892c
  • Z.A. Dreger and Y.M. Gupta, Phase diagram of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine crystals at high pressures and temperatures, The Journal of Physical Chemistry A 114 (2010), pp. 8099–8105.10.1021/jp105226s
  • A.J. Davidson, I.D. Oswald, D.J. Francis, A.R. Lennie, W.G. Marshall, D.I. Millar, C.R. Pulham, J.E. Warren, and A.S. Cumming, Explosives under pressure—the crystal structure of γ-RDX as determined by high-pressure X-ray and neutron diffraction, CrystEngComm 10 (2008), pp. 162–165.10.1039/B715677B
  • C.S. Choi and E. Prince, The crystal structure of cyclotrimethylenetrinitramine, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 28 (1972), pp. 2857–2862.10.1107/S0567740872007046
  • S. Haussühl, Elastic and thermoelastic properties of selected organic crystals: acenaphthene, trans-azobenzene, benzophenone, tolane, trans-stilbene, dibenzyl, diphenyl sulfone, 2,2´-biphenol, urea, melamine, hexogen, succinimide, pentaerythritol, urotropine, malonic, Z. Kristallogr. 216 (2001), pp. 339–353.
  • R.B. Schwarz, D.E. Hooks, J.J. Dick, J.I. Archuleta, and A.R. Martinez, Resonant ultrasound spectroscopy measurement of the elastic constants of cyclotrimethylene trinitramine, Journal of Applied Physics 98 (2005), p. 056106.10.1063/1.2037865
  • J.J. Haycraft, L.L. Stevens, and C.J. Eckhardt, The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering, The Journal of Chemical Physics 124 (2006), p. 024712.10.1063/1.2141958
  • B. Sun, J.M. Winey, N. Hemmi, Z.A. Dreger, K.A. Zimmerman, Y.M. Gupta, D.H. Torchinsky, and K.A. Nelson, Second-order elastic constants of pentaerythritol tetranitrate and cyclotrimethylene trinitramine using impulsive stimulated thermal scattering, Journal of Applied Physics 104 (2008), p. 073517.10.1063/1.2981044
  • W. Connick and F.G.J. May, Dislocation etching of cyclotrimethylene trinitramine crystals, Journal of Crystal Growth 5 (1969), pp. 65–69.10.1016/0022-0248(69)90077-3
  • I.T. McDermott and P.P. Phakey, A method of correlating dislocations and etch pits: application to cyclotrimethylene trinitramine, Journal of Applied Crystallography 4 (1971), pp. 479–481.10.1107/S0021889871007490
  • H.G. Gallagher, P.J. Halfpenny, J.C. Miller, J.N. Sherwood, and D. Tabor, Dislocation Slip Systems in Pentaerythritol Tetranitrate (PETN) and Cyclotrimethylene Trinitramine (RDX) [and Discussion], Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 339 (1992), pp. 293–303.10.1098/rsta.1992.0036
  • K.J. Ramos, D.E. Hooks, and D.F. Bahr, Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindentation, Philosophical Magazine 89 (2009), pp. 2381–2402.10.1080/14786430903120335
  • D.A. LaBarbera and M.A. Zikry, The effects of microstructural defects on hot spot formation in cyclotrimethylenetrinitramine-polychlorotrifluoroethylene energetic aggregates, Journal of Applied Physics 113 (2013), p. 243502.10.1063/1.4811684
  • J.J. Yoh, M.A. McClelland, J.L. Maienschein, J.F. Wardell, and C.M. Tarver, Simulating thermal explosion of cyclotrimethylenetrinitramine-based explosives: Model comparison with experiment, Journal of Applied Physics 97 (2005), p. 083504.10.1063/1.1863429
  • S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam, 1999.
  • L. Anand and M. Kothari, A computational procedure for rate-independent crystal plasticity, Journal of the Mechanics and Physics of Solids 44 (1996), pp. 525–558.10.1016/0022-5096(96)00001-4
  • D. Peirce, R.J. Asaro, and A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metallurgica 31 (1983), pp. 1951–1976.10.1016/0001-6160(83)90014-7
  • A.M. Cuitino and M. Ortiz, Computational modelling of single crystals, Modelling and Simulation in Materials Science and Engineering 1 (1993), p. 225.10.1088/0965-0393/1/3/001
  • F. Birch, Finite elastic strain of cubic crystals, Physical Review 71 (1947), pp. 809–824.10.1103/PhysRev.71.809
  • P.N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM Journal on Scientific and Statistical Computing 11 (1990), pp. 450–481.10.1137/0911026
  • D.A. Knoll and D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, Journal of Computational Physics 193 (2004), pp. 357–397.10.1016/j.jcp.2003.08.010
  • J. Lubliner, Plasticity Theory, Dover Publications, New York, NY, 2008.
  • Y.W. Chang and R.J. Asaro, An experimental study of shear localization in aluminum-copper single crystals, Acta Metallurgica 29 (1981), pp. 241–257.10.1016/0001-6160(81)90103-6
  • K.J. Bathe, Finite Element Procedures, Prentice-Hall, Upper Saddle River, NJ, 1996.
  • Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing 7 (1986), pp. 856–869.10.1137/0907058
  • D.E. Hooks, K.J. Ramos, and A.R. Martinez, Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa, Journal of Applied Physics 100 (2006), p. 024908.10.1063/1.2214639
  • S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals, Journal of the Mechanics and Physics of Solids 40 (1992), pp. 537–569.10.1016/0022-5096(92)80003-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.