368
Views
22
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A multiscale gradient-dependent plasticity model for size effects

, &
Pages 1883-1908 | Received 18 Dec 2015, Accepted 12 Apr 2016, Published online: 08 May 2016

References

  • R.W. Armstrong, On size effects in polycrystal plasticity, J. Mech. Phys. Solids 9 (1961), pp. 196–199.10.1016/0022-5096(61)90018-7
  • H.M. Zbib and D.T. De la Rubia, A multiscale model of plasticity, Int. J. Plast. 18 (2002), pp. 1133–1163.10.1016/S0749-6419(01)00044-4
  • H.M. Zbib, Strain gradients and size effects in non-uniform plastic deformations, Scr. Metall. Mater. 30 (1994), pp. 1223–1226.10.1016/0956-716X(94)90343-3
  • E.O. Hall, The deformation and ageing of mild steel, Proc. Phys. Soc. London, Sect. B 64 (1951), pp. 747–753.10.1088/0370-1301/64/9/303
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), pp. 25–28.
  • J.D. Eshelby, Edge dislocations in anisotropic materials, Philos. Mag. 40 (1949), pp. 903–912.10.1080/14786444908561420
  • B.A. Bilby and J.D. Eshelby, Dislocation and the theory of fracture Vol. 1, S.l. : s.n., New York, 1968, pp. 99–110.
  • N. Taheri-Nassaj and H.M. Zbib, On dislocation pile ups and stress-gradient dependent plastic flow, Int. J. Plast. 74 (2015), pp. 1–16.10.1016/j.ijplas.2015.06.001
  • D. Liu, Y. He, B. Zhang, and L. Shen, A continuum theory of stress gradient plasticity based on the dislocation pile-up model, Acta Mater. 80 (2014), pp. 350–364.10.1016/j.actamat.2014.07.043
  • S.S. Chakravarthy and W.A. Curtin, Stress-gradient plasticity, Proc. Nat. Acad. Sci. USA 108 (2011), pp. 15716–15720.10.1073/pnas.1107035108
  • H.M. Zbib and E.C. Aifantis, On the localization and post localization behavior of plastic deformation-I. On the initiation of shear bands, Int. J. Struct. Mech. Mater. Sci. 23 (1988), pp. 261–277.
  • H.M. Zbib and E.C. Aifantis, On the localization and post localization behavior of plastic deformation-II. On the evolution and thickness of shear bands, Int. J. Struct. Mech. Mater. Sci. 23 (1988), pp. 279–292.
  • H.M. Zbib and E.C. Aifantis, On the localization and post localization behavior of plastic deformation-III. On the structure and velocity of Portevin-Le Chatelier bands, Int. J. Struct. Mech. Mater. Sci. 23 (1988), pp. 293–305.
  • H.M. Zbib and E.C. Aifantis, A gradient-dependent flow theory of plasticity: Application to metal and soil instabilities, ASME Appl. Mech. Rev. 42, 11 (1989), Part 2, pp. 295–304.10.1115/1.3152403
  • H.M. Zbib and E.C. Aifantis, On the gradient-dependent theory of plasticity and shear banding, Acta Mech. 92 (1992), pp. 209–225.10.1007/BF01174177
  • N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity, Adv. Appl. Mech. 33 (1997), pp. 295–361.10.1016/S0065-2156(08)70388-0
  • H. Lyu, H. Ruimi, and H.M. Zbib, A dislocation-based model for deformation and size effect in multi-phase steels, Int. J. Plast. 72 (2015), pp. 44–59.10.1016/j.ijplas.2015.05.005
  • R.A. Lebensohn and C.N. Tomé, A self-consistent approach for the simulation of plastic deformation and texture development of polycrystals: Application to Zirconium alloys, Acta Metall. Mater. 41 (1993), pp. 2611–2624.10.1016/0956-7151(93)90130-K
  • R.A. Lebensohn and C.N. Tomé, A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals, Mat. Sci. Eng. 175 (1994), pp. 71–82.10.1016/0921-5093(94)91047-2
  • H. Askari, J. Young, D. Field, G. Kridli, D. Li, and H.M. Zbib, A study of the hot and cold deformation of twin-roll cast magnesium alloy AZ31, Philos. Mag. 94 (2014), pp. 381–403.10.1080/14786435.2013.853884
  • E. Orowan, Problems of plastic gliding, Proc. Phys. Soc. 52 (1940), pp. 8–22.10.1088/0959-5309/52/1/303
  • J.E. Bailey and P.B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline slilver, Philos. Mag. 5 (1960), pp. 485–497.10.1080/14786436008238300
  • D. Li, H.M. Zbib, X. Sun, and M. Khaleel, Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics, Int. J. Plast. 52 (2014), pp. 3–17.10.1016/j.ijplas.2013.01.015
  • J.S. Stölken and A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater. 46 (1998), pp. 5109–5115.10.1016/S1359-6454(98)00153-0
  • A. Evans and J.W. Hutchinson, A critical assessment of theories of strain gradient plasticity, Acta Mater. 57 (2009), pp. 1675–1688.10.1016/j.actamat.2008.12.012
  • B. Ehrler, X. Hou, T.T. Zhu, K.M.Y. P’ng, C.J. Walker, A.J. Bushby, and D.J. Dunstan, Grain size and sample size interact to determine strength in a soft metal, Philos. Mag. 88 (2008), pp. 3043–3050.10.1080/14786430802392548
  • N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42 (1994), pp. 475–487.10.1016/0956-7151(94)90502-9
  • D.J. Dunstan, B. Ehrler, R. Bossis, S. Joly, K.M.Y. P’ng, and A.J. Bushby, Elastic limit and strain hardening of thin wires in torsion, Phys. Rev. Lett. 103 (2009), p. 155501.10.1103/PhysRevLett.103.155501
  • M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Sample dimensions influence strength and crystal plasticity, Science 305 (2004), pp. 986–989.10.1126/science.1098993
  • T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids, Int. J. Plast. 21 (2005), pp. 2071–2088.10.1016/j.ijplas.2005.03.018
  • T. Ohashi, K. Masato, and H.M. Zbib, A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals, Int. J. Plast. 23 (2007), pp. 897–914.10.1016/j.ijplas.2006.10.002
  • J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (1953), pp. 153–162.10.1016/0001-6160(53)90054-6
  • K. Shizawa and H.M. Zbib, A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals, Int. J. Plast. 15 (1999), pp. 899–938.10.1016/S0749-6419(99)00018-2
  • J.P. Hirth, Dislocation pileups in stress gradients, Philos. Mag. 86 (2006), pp. 3959–3963.10.1080/14786430500415690
  • H. Lyu, H. Ruimi, F. Zhang, and H.M. Zbib, Multi Scale Modeling of Microstructure Deformation in Material Processing, MS&T, Colombus, OH, 2015.
  • Y. Bergstrom, Y. Granbom, and D. SterkenburgA dislocation-based theory for the deformation hardening behavior of DP steels: impact of martensite content and ferrite grain size, J. Metall. 2010 (2010), p. 647198.
  • F. Akasheh, H.M. Zbib, and T. Ohashi, Multiscale modelling of size effect in fcc crystals: discrete dislocation dynamics and dislocation-based gradient plasticity, Philos. Mag. 87 (2007), pp. 1307–1326.10.1080/14786430600970404
  • N. Abdolrahim, I.N. Mastorakos, and H.M. Zbib, Precipitate strengthening in nanostructured metallic material composites, Philos. Mag. 92 (2012), pp. 597–607.10.1080/09500839.2012.704153
  • N. Abdolrahim, H.M. Zbib, and D.F. Bahr, Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems, Int. J. Plast. 52 (2014), pp. 33–50.10.1016/j.ijplas.2013.04.002
  • A. Thompson, Effect of grain size on work hardening in nickel, Acta Metall. 25 (1977), pp. 83–86.10.1016/0001-6160(77)90249-8
  • M. Meyers, A. Mishra, and D. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006), pp. 427–556.10.1016/j.pmatsci.2005.08.003
  • F. Ebrahimi, G. Bourne, M. Kelly, and T. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition, Nanostruct. Mater. 11 (1999), pp. 343–350.10.1016/S0965-9773(99)00050-1
  • N. Wang, Z. Wang, K. Aust, and U. Erb, Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique, Mater. Sci. Eng. A 237 (1997), pp. 150–158.
  • Y.M. Wang, R.T. Ott, T. Van Buuren, T.M. Willey, M.M. Biener, and A.V. Hamza, Controlling factors in tensile deformation of nanocrystalline cobalt and nickel, Phys. Rev. B 85 (2012), p. 014101.10.1103/PhysRevB.85.014101
  • R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel, Acta Mater. 51 (2003), pp. 5159–5172.10.1016/S1359-6454(03)00365-3
  • D. Jang and M. Atzmon, Grain-size dependence of plastic deformation in nanocrystalline Fe, J. Appl. Phys. 93 (2003), pp. 9282–9286.10.1063/1.1569035
  • A.E. Jaafar, Unravelling the physics of size-dependent dislocation-mediated plasticity, Nat. commun. 6 (2014), p. 5926.
  • S.R. Kalidindi, Incoporation of deformation twinning in crystal plasticity models, J. Mech. Phys. Solids 46 (1998), pp. 267–290.10.1016/S0022-5096(97)00051-3
  • P.V. Houtte, Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metall. 26 (1978), pp. 591–604.10.1016/0001-6160(78)90111-6
  • J.D.Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc London Ser. A Math. Phys. Sci. 241 (1957), pp. 376–396.10.1098/rspa.1957.0133
  • H.W. Luo, J. Sietsma, and S. Van Der Zwaag, A novel observation of strain-induced ferrite-to-austenite retransformation after intercritical deformation of C-Mn steel, Metall. Mater. Trans. A., 35 (2004), pp. 2789–2797.
  • R. Masson, M. Bornert, P. Suquet, and A. Zaoui, An affined formulation for the prediction of the effective properties of nonlinear composties and polycrystals, J. Mech. Phys. Solids 48 (2000), pp. 1203–1227.10.1016/S0022-5096(99)00071-X
  • M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater. 59 (2011), pp. 658–670.10.1016/j.actamat.2010.10.002
  • R.A. Lebensohn, C.N. Tomé, and P.J. Maudlin, A self consistent formulation for the prediction of the anisotropic behavior of viscoplastic polycrystals with void, J. Mech. Phys. Solids 52 (2004), pp. 249–278.10.1016/S0022-5096(03)00114-5
  • S. Queyreau, G. Monnet, and B. Devincre, Slip systems interactions in α-iron determined by dislocation dynamic simulations, Int. J. Plast. 25 (2009), pp. 361–377.10.1016/j.ijplas.2007.12.009
  • D. Terentyev, D.J. Bacon, Osetsky, and N. Yu, Interaction of an edge dislocation with voids in α-iron modelled with different interatomic potentials, J. Phys. : condens. Matter. 20 (2008), pp. 445007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.