519
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy

, , &
Pages 1965-1977 | Received 07 Mar 2016, Accepted 26 Apr 2016, Published online: 20 May 2016

References

  • R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005), pp. 1–78. doi:10.1016/j.mser.2005.07.001.
  • R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent advances in friction-stir welding – Process, Weldment structure and properties, Prog. Mater. Sci. 53 (2008), pp. 980–1023. doi:10.1016/j.pmatsci.2008.05.001.
  • P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction stir welding of aluminium alloys, Int. Mater. Rev. 54 (2009), pp. 49–93. doi:10.1179/174328009X411136.
  • P.B. Prangnell and C.P. Heason, Grain structure formation during friction stir welding observed by the stop action technique, Acta Mater. 53 (2005), pp. 3179–3192. doi:10.1016/j.actamat.2005.03.044.
  • S. Mironov, K. Inagaki, Y.S. Sato, and H. Kokawa, Microstructural evolution of pure copper during friction-stir welding, Phil. Mag. 95 (2015), pp. 367–381. doi:10.1080/14786435.2015.1006293.
  • J.-Q. Su, T.W. Nelson, T.R. McNelley, and R.S. Mishra, Development of nanocrystalline structure in Cu during friction stir processing (FSP), Mater. Sci. Eng. A 528 (2011), pp. 5458–5464. doi:10.1016/j.msea.2011.03.043.
  • U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, and H. Kokawa, Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets, Mater. Sci. Eng. A 527 (2010), pp. 1962–1969. doi:10.1016/j.msea.2009.11.029.
  • N. Xu, R. Ueji, Y. Morisada, and H. Fujii, Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling, Mater. Des. 56 (2014), pp. 20–25. doi:10.1016/j.matdes.2013.10.076.
  • N. Xu, R. Ueji, and H. Fujii, Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding, Mater. Sci. Eng. A 610 (2014), pp. 132–138. doi:10.1016/j.msea.2014.05.037.
  • M. Imam, R. Ueji, and H. Fujii, Effect of online rapid cooling on microstructure and mechanical properties of friction stir welded medium carbon steel, J. Mater. Proc. Technol. 230 (2016), pp. 62–71. doi:10.1016/j.jmatprotec.2015.11.015.
  • A. Orozco-Caballero, P. Hidalgo-Manrique, C.M. Cepeda-Jiménez, P. Rey, D. Verdera, O.A. Ruano, and F. Carreño, Strategy for severe friction stir processing to obtain acute grain refinement of an Al–Zn–Mg–Cu alloy in three initial precipitation states, Mater. Charact. 112 (2016), pp. 197–205. doi:10.1016/j.matchar.2015.12.014.
  • D.C. Hofmann and K.S. Vecchio, Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials, Mater. Sci. Eng. A 402 (2005), pp. 234–241. doi:10.1016/j.msea.2005.04.032.
  • D.C. Hofmann and K.S. Vecchio, Thermal history analysis of friction stir processed and submerged friction stir processed aluminum, Mater. Sci. Eng. A 465 (2007), pp. 165–175. doi:10.1016/j.msea.2007.02.056.
  • P. Upadhyay and A.P. Reynolds, Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets, Mater. Sci. Eng. A 527 (2010), pp. 1537–1543. doi:10.1016/j.msea.2009.10.039.
  • X. Feng, H. Liu, and J.C. Lippold, Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219, Mater. Charact. 82 (2013), pp. 97–102. doi:10.1016/j.matchar.2013.05.010.
  • F. Chai, D. Zhang, Y. Li, and W. Zhang, High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing, Mater. Sci. Eng. A 568 (2013), pp. 40–48. doi:10.1016/j.msea.2013.01.026.
  • B. Darras and E. Kishta, Submerged friction stir processing of AZ31 magnesium alloy, Mater. Des. 47 (2013), pp. 133–137. doi:10.1016/j.matdes.2012.12.026.
  • F. Chai, D. Zhang, W. Zhang, and Y. Li, Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy, Mater. Sci. Eng. A 590 (2014), pp. 80–87. doi:10.1016/j.msea.2013.10.029.
  • Z. Zhang, B.L. Xiao, and Z.Y. Ma, Influence of water cooling on microstructure and mechanical properties of friction stir welded 2014Al-T6 joints, Mater. Sci. Eng. A 614 (2014), pp. 6–15. doi:10.1016/j.msea.2014.06.093.
  • S. Mironov, K. Inagaki, Y.S. Sato, andH. Kokawa, Effect of welding temperature on microstructure of friction-stir welded aluminum alloy metal, Mater. Trans. A 46(2015) (1050), pp. 783–790. doi:10.1007/s11661-014-2651-0.
  • R.W. Fonda and K.E. Knipling, Texture development in friction stir welds, Sci. Technol. Weld. Joining 16 (2001), pp. 288–294. doi:10.1179/1362171811Y.0000000010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.