155
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Organic functionalization of thermally reduced graphene oxide nanoplatelets by adsorption: structural and morphological characterization

, &
Pages 2143-2160 | Received 14 Dec 2015, Accepted 27 May 2016, Published online: 16 Jun 2016

References

  • A.U. Chaudhry and V. Mittal, High-density polyethylene nanocomposites using masterbatches of chlorinated polyethylene/graphene oxide, Polym. Eng. Sci. 53 (2013), pp. 78–88.10.1002/pen.v53.1
  • V. Mittal, G.E. Luckachan, and N.B. Matsko, PE/chlorinated-PE blends and PE/chlorinated-PE/graphene oxide nanocomposites: Morphology, phase miscibility, and interfacial interactions, Macromol. Chem. Phys. 215 (2014), pp. 255–268.10.1002/macp.v215.3
  • H. Qin, T. Gong, Y. Cho, C. Lee, and T. Kim, A conductive copolymer of graphene oxide/poly(1-(3-aminopropyl)pyrrole) and the adsorption of metal ions, Polym. Chem. 5 (2014), pp. 4466–4473.10.1039/c4py00102h
  • Y.S. Lipatov, A.E. Nesterov, T.D. Ignatova, and D.A. Nesterov, Effect of polymer–filler surface interactions on the phase separation in polymer blends, Polymer 43 (2002), pp. 875–880.10.1016/S0032-3861(01)00632-2
  • S. Radhakrishnan, C.R. Siju, D. Mahanta, S. Patil, and G. Madras, Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings, Electrochim. Acta 54 (2009), pp. 1249–1254.10.1016/j.electacta.2008.08.069
  • M.R. Vengatesan, S. Singh, V.V. Pillai, and V. Mittal, Crystallization, mechanical, and fracture behavior of mullite fiber-reinforced polypropylene nanocomposites, J. Appl. Polym. Sci. 43725 (2016). doi:10.1002/app.43725.
  • A.U. Chaudhry and V. Mittal, Blends of high-density polyethylene with chlorinated polyethylene: Morphology, thermal, rheological, and mechanical properties, Polym. Eng. Sci. 54 (2014), pp. 85–95.10.1002/pen.v54.1
  • S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006), pp. 282–286.10.1038/nature04969
  • J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer 52 (2011), pp. 5–25.10.1016/j.polymer.2010.11.042
  • A.A. Vasileiou, M. Kontopoulou, and A. Docoslis, A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites, ACS Appl. Mater. Interf. 6 (2014), pp. 1916–1925.10.1021/am404979g
  • S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, and R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem 16 (2006), pp. 155–158.10.1039/B512799H
  • M.M. Gudarzi and F. Sharif, Molecular level dispersion of graphene in polymer matrices using colloidal polymer and graphene, J. Coll. Interf. Sci. 366 (2012), pp. 44–50.10.1016/j.jcis.2011.09.086
  • L. Xu and X. Yang, Molecular dynamics simulation of adsorption of pyrene–polyethylene glycol onto graphene, J. Coll. Interf. Sci. 418 (2014), pp. 66–73.10.1016/j.jcis.2013.12.005
  • A.M. Henderson, Ethylene-vinyl acetate (EVA) copolymers: A general review, IEEE Electr. Insul. Mag. 9 (1993), pp. 30–38.10.1109/57.249923
  • M.A.R. Moraes, A.C.F. Moreira, R.V. Barbosa, and B.G. Soares, Graft copolymer from modified tthylene-vinyl acetate (EVA) copolymers. 3. Poly(EVA-g-methyl methacrylate) from mercapto-modified EVA, Macromolecules 29 (1996), pp. 416–422.10.1021/ma950814d
  • A. Romanov, K. Marcincin, and E. Lathová, Modification of ethylene-vinyl acetate copolymer by acrylamide in solid state, Chem. Pap. 26 (1972), pp. 385–389.
  • J.S. Parent, K. Geramita, S. Ranganathan, and R.A. Whitney, Silane-modified poly(ethylene-co-vinyl acetate): Influence of comonomers on peroxide-initiated vinylsilane grafting, J. Appl. Polym. Sci. 76 (2000), pp. 1308–1314.10.1002/(ISSN)1097-4628
  • C. Fonseca, J.G. Fatou, and J.M. Pereña, Study of the acetoxy-hydroxide transformation in ethylene-vinyl acetate copolymers, Angew. Makromol. Chem. 190 (1991), pp. 137–155.10.1002/apmc.1991.051900109
  • C.H. Jeon, S.H. Ryu, and Y.-W. Chang, Preparation and characterization of ethylene vinyl acetate copolymer/montmorillonite nanocomposite, Polym. Int. 52 (2003), pp. 153–157.10.1002/(ISSN)1097-0126
  • M. Khan, A. Chaudhry, S. Hashim, and M. Iqbal, Investigation of corrosion-protective performance of polyaniline covered inorganic pigments, Nucleus 47 (2010), pp. 287–293.
  • S. Sathiyanarayanan, S.S. Azim, and G. Venkatachari, A new corrosion protection coating with polyaniline-TiO2 composite for steel, Electrochim. Acta 52 (2007), pp. 2068–2074.10.1016/j.electacta.2006.08.022
  • S. Sathiyanarayanan, S.S. Azim, and G. Venkatachari, Preparation of polyaniline-Fe2O3 composite and its anticorrosion performance, Synth. Met. 157 (2007), pp. 751–757.10.1016/j.synthmet.2007.08.004
  • J. Brodinova, J. Stejskal, and A. Kalendova, Investigation of ferrites properties with polyaniline layer in anticorrosive coatings, J. Solid State Electron. 68 (2007), pp. 1091–1095.
  • K.H. Wu, C.M. Chao, C.H. Liu, and T.C. Chang, Characterization and corrosion resistance of organically modified silicate-NiZn ferrite/polyaniline hybrid coatings on aluminum alloys, Corros. Sci. 49 (2007), pp. 3001–3014.10.1016/j.corsci.2007.02.008
  • A. Kalendova, I. Sapurina, J. Stejskal, and D. Vesely, Anticorrosion properties of polyaniline-coated pigments in organic coatings, Corros. Sci. 50 (2008), pp. 3549–3560.10.1016/j.corsci.2008.08.044
  • M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, and I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater. 19 (2007), pp. 4396–4404.10.1021/cm0630800
  • W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958), p. 1339.10.1021/ja01539a017
  • J. Luo, S. Jiang, Y. Wu, M. Chen, and X. Liu, Synthesis of stable aqueous dispersion of graphene/polyaniline composite mediated by polystyrene sulfonic acid, J. Polym. Sci. Part A Polym. Chem. 50 (2012), pp. 4888–4894.10.1002/pola.v50.23
  • N.B. Matsko, F.P. Schmidt, I. Letofsky-Papst, A. Rudenko, and V. Mittal, In-situ determination and imaging of physical properties of soft organic materials by analytical transmission electron microscopy, Microsc. Microanal. 20 (2014). doi:10.1017/S1431927614000348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.