547
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Hydrogen segregation to inclined twin grain boundaries in nickel

&
Pages 2808-2828 | Received 28 Mar 2016, Accepted 12 Jul 2016, Published online: 04 Aug 2016

References

  • V. Randle, Grain boundary engineering: An overview after 25 years, Mater. Sci. Technol. 26 (2010), pp. 253–261.
  • G. Palumbo, P. King, K. Aust, U. Erb, and P. Lichtenberger, Grain boundary design and control for intergranular stress-corrosion resistance, Scripta Metallurgica Materialia 25 (1991), pp. 1775–1780.
  • M. Kumar, W.E. King, and A.J. Schwartz, Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing, Acta Materialia 48 (2000), pp. 2081–2091.
  • T. Watanabe, Approach to grain boundary design for strong and ductile polycrystals, Res Mech. 11 (1984), pp. 47–84.
  • T. Watanabe, Grain boundary design for desirable mechanical properties, J. Phys. Colloques 49 (1988), pp. 507–519.
  • G. Palumbo and K.T. Aust, Structure-dependence of intergranular corrosion in high purity nickel, Acta Metallurgica Materialia 38 (1990), pp. 2343–2352.
  • S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie, Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials, Acta Materialia 57 (2009), pp. 4148–4157.
  • M. Seita, J.P. Hanson, S. Gradečak, and M.J. Demkowicz, The dual role of coherent twin boundaries in hydrogen embrittlement, Nat. Commun. 6 (2015), p. 6164.
  • P. Lejček, S. Hofmann, and V. Paidar, Solute segregation and classification of [1 0 0 0] tilt grain boundaries in α-iron: Consequences for grain boundary engineering, Acta Materialia 51 (2003), pp. 3951–3963.
  • A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, and X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Materialia 60 (2012), pp. 6814–6828.
  • A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau, and X. Feaugas, The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel, Scripta Materialia 66 (2012), pp. 37–40.
  • A. Alvaro and I. Thue, Jensen, N. Kheradmand, O. M. Løvvik, and V. Olden, Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing, Int. J. Hydrogen Energy 40 (2015), pp. 16892–16900.
  • W. Barrows, R. Dingreville, and D. Spearot, Traction-separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations, Mater. Sci. Eng. A 650 (2016), pp. 354–364.
  • V. Randle, G. Rohrer, H. Miller, M. Coleman, and G. Owen, Five-parameter grain boundary distribution of commercially grain boundary engineered nickel and copper, Acta Materialia 56 (2008), pp. 2363–2373.
  • M. Shiga, M. Yamaguchi, and H. Kaburaki, Structure and energetics of clean and hydrogenated Ni surfaces and symmetrical tilt grain boundaries using the embedded-atom method, Phys. Rev. B 68 (2003), p. 245402.
  • D. Di Stefano, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel, Acta Materialia 98 (2015), pp. 306–312.
  • C.J. O’Brien and S.M. Foiles, Misoriented grain boundaries vicinal to the (111) [1 1 0] twin in nickel part II: Thermodynamics of hydrogen segregation, Philos. Mag. 96 (2016), pp. 1463–1484.
  • J.E. Angelo, N.R. Moody, and M.I. Baskes, Trapping of hydrogen to lattice defects in nickel, Model. Simul. Mater. Sci. Eng. 3 (1995), pp. 289–307.
  • J. Wang, N. Li, and A. Misra, Structure and stability of ∑3 grain boundaries in face centered cubic metals, Philos. Mag. 93 (2013), pp. 315–327.
  • M.A. Tschopp and D.L. McDowell, Structural unit and faceting description of ∑3 asymmetric tilt grain boundaries, J. Mater. Sci. 42 (2007), pp. 7806–7811.
  • U. Wolf, F. Ernst, T. Muschik, M.W. Finnis, and H.F. Fischmeister, The influence of grain boundary inclination on the structure and energy of σ = 3 grain boundaries in copper, Philos. Mag. A 66 (1992), pp. 991–1016.
  • M. Sennour, S. Lartigue-Korinek, Y. Champion, and M.J. Hÿtch, HRTEM study of defects in twin boundaries of ultra-fine grained copper, Philos. Mag. 87 (2007), pp. 1465–1486.
  • C. Schmidt, M.W. Finnis, F. Ernst, and V. Vitek, Theoretical and experimental investigations of structures and energies of ∑ = 3 tilt grain boundaries in copper, Philos. Mag. A 77 (1998), pp. 1161–1184.
  • T.E. Hsieh and R.W. Balluffi, Observations of roughening/de-faceting phase transitions in grain boundaries, Acta Metallurgica 37 (1989), pp. 2133–2139.
  • S. Dash and N. Brown, An investigation of the origin and growth of annealing twins, Acta Metallurgica 11 (1963), pp. 1067–1075.
  • G. Lucadamo and D. Medlin, Dislocation emission at junctions between ∑ = 3 grain boundaries in gold thin films, Acta Materialia 50 (2002), pp. 3045–3055.
  • M.A. Tschopp and D.L. McDowell, Dislocation nucleation in ∑3 asymmetric tilt grain boundaries, Int. J. Plasticity 24 (2008), pp. 191–217.
  • S.K. Lawrence, B.P. Somerday, N.R. Moody, and D.F. Bahr, Grain boundary contributions to hydrogen-affected plasticity in Ni-201, J. Manag. 66 (2014), pp. 1383–1389.
  • M.A. Tschopp and D.L. McDowell, Structures and energies of ∑3 asymmetric tilt grain boundaries in copper and aluminium, Philos. Mag. 87 (2007), pp. 3147–3173.
  • A.P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries, Philos. Trans. R. Soc. A: Math. Phys, Eng. Sci. 309 (1983), pp. 37–54.
  • J. Rittner and D. Seidman, [110] symmetric tilt grain-boundary structures in FCC metals with low stacking-fault energies, Phys. Rev. B 54 (1996), pp. 6999–7015.
  • F. Ernst, M.W. Finnis, D. Hofmann, T. Muschik, U. Schonberger, U. Wolf, and M. Methfessel, Theoretical prediction and direct observation of the 9R structure in Ag, Phys. Rev. Lett. 69 (1992), p. 620.
  • M.A. Tschopp, G.J. Tucker, and D.L. McDowell, Structure and free volume of [110] symmetric tilt grain boundaries with the E structural unit, Acta Materialia 55 (2007), pp. 3959–3969.
  • G.J. Wang, A. P. l, and V. Vitek, A computer simulation study of [110] and [111] tilt boundaries: The multiplicity of structures, Acta Metallurgica 32 (1984), pp. 1093–1104.
  • V. Vitek and G.J. Wang, Atomic structure of grain boundaries and intergranular segregation, J. Phys. Colloques 43 (1982), pp. 147–161.
  • D.G. Brandon, The structure of high-angle grain boundaries, Acta Metallurgica 14 (1966), pp. 1479–1484.
  • C.J. O’Brien, D.L. Medlin, and S.M. Foiles, Misoriented grain boundaries vicinal to the [111] [110] twin in nickel part I: Thermodynamics & temperature-dependent structure, Philos. Mag. 96 (2016), pp. 1285–1304.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.
  • M.I. Baskes, X. Sha, J.E. Angelo, and N.R. Moody, Trapping of hydrogen to lattice defects in nickel, Model. Simul. Mater. Sci. Eng. 5 (1997), pp. 651–652.
  • R.B. McLellan and P.L. Sutter, Thermodynamics of the hydrogen-nickel system, Acta Metallurgica 32 (1984), pp. 2233–2239.
  • J.W. Cahn, Thermodynamics of solid and fluid surfaces, in Interfacial Segregation, W.C. Johnson and J.M. Blakely, eds., American Society of Metals, Metals Park, OH, 1977, pp. 193–228.
  • D.L. Medlin, S.M. Foiles, and D. Cohen, A dislocation-based description of grain boundary dissociation: Application to a 90° [110] tilt boundary in gold, Acta Materialia 49 (2001), pp. 3689–3697.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63 (2001), p. 224106.
  • Y. Mishin, D. Farkas, M. Mehl, and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B 59 (1999), pp. 3393–3407.
  • E.A. Marquis, D.L. Medlin, and F. Léonard, Stabilization of extended stacking faults by {111}/{112} twin junction interactions, Acta Materialia 55 (2007), pp. 5917–5923.
  • J.A. Brown and N.M. Ghoniem, Structure and motion of junctions between coherent and incoherent twin boundaries in copper, Acta Materialia 57 (2009), pp. 4454–4462.
  • R.C.Pond, and V.Vitek, Periodic grain boundary structures in aluminium. I. A combined experimental and theoretical investigation of coincidence grain boundary structure in aluminium, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 357 (1977), pp. 453–470.
  • E.A. Marquis, J.C. Hamilton, D.L. Medlin, and F. Léonard, Finite-size effects on the structure of grain boundaries, Phys. Rev. Lett. 93 (2004), pp. 1–4.
  • H. Ichinose and Y. Ishida, Observation of [110] tilt boundary structures in gold by high resolution HVEM, Philos. Mag. A 43 (1981), pp. 1253–1264.
  • A. Brokman and V.I. Marchenko, Landau theory of flattening phase transition in grain boundaries, Scripta Metallurgica Materialia 30 (1994), pp. 639–642.
  • A.F. Andreev, Faceting phase transitions of crystals, Sov. Phys. JETP 53 (1981), pp. 1063–1069.
  • J. Hamilton, D. Siegel, I. Daruka, and F. Léonard, Why do grain boundaries exhibit finite facet lengths? Phys. Rev. Lett. 90 (2003), p. 246102.
  • H. Tsuzuki, P.S. Branicio, and J.P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood, Comput. Phys. Commun. 177 (2007), pp. 518–523.
  • D. Faken and H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics, Comput. Mater. Sci. 2 (1994), pp. 279–286.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open VIsualization TOol, Model. Simul. Mater. Sci. Eng. 18 (2009), p. 015012.
  • J. Cai and Y.Y. Ye, Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys, Phys. Rev. B 54 (1996), pp. 8398–8410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.