146
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The role of nickel addition and annealing temperature on ion storage performance of nanostructured nickel ferrite thin films

, &
Pages 2953-2968 | Received 08 Apr 2016, Accepted 29 Jul 2016, Published online: 16 Aug 2016

References

  • M.M. Uplane, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, A.C. Sonavane, and P.S. Patil, Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide, Appl. Surf. Sci. 253 (2007), pp. 9365–9371.10.1016/j.apsusc.2007.05.069
  • D.S. Dalavi, M.J. Suryavanshi, D.S. Patil, S.S. Mali, A.V. Moholkar, S.S. Kalagi, S.A. Vanalkar, S.R. Kang, J.H. Kim, and P.S. Patil, Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness, Appl. Surf. Sci. 257 (2011), pp. 2647–2656.10.1016/j.apsusc.2010.10.037
  • Y.-Q. Chu, Z.-W. Fu, and Q.-Z. Qin, Cobalt ferrite thin films as anode material for lithium ion batteries, Electrochim. Acta 49 (2004), pp. 4915–4921.10.1016/j.electacta.2004.06.012
  • D.K. Pawar, S.M. Pawar, P.S. Patil, and S.S. Kolekar, Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method, J. Alloys Compd. 509 (2011), pp. 3587–3591.10.1016/j.jallcom.2010.12.079
  • K. Jeyalakshmi and G. Muralidharan, Role of annealing duration on the microstructure and electrochemical performance of β-V2O5 thin films, Philos. Mag. 94 (2014), pp. 946–955.10.1080/14786435.2013.870672
  • B. Orel, M. Maček, F. Švegl, and K. Kalcher, Electrochromism of iron oxide films prepared via the sol–gel route by the dip-coating technique, Thin Solid Films 246 (1994), pp. 131–142.10.1016/0040-6090(94)90742-0
  • Y. He, L. Huang, J.-S. Cai, X.-M. Zheng, and S.-G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries, Electrochim. Acta 55 (2010), pp. 1140–1144.10.1016/j.electacta.2009.10.014
  • M.A. Garcia-Lobato, A.I. Martinez, D.L. Perry, M. Castro-Roman, R.A. Zarate, and L. Escobar-Alarcon, Elucidation of the electrochromic mechanism of nanostructured iron oxides films, Sol. Energy Mater. Sol. Cells 95 (2011), pp. 751–758.10.1016/j.solmat.2010.10.017
  • N. Ozer, F. Tepehan, and G. Tepehan, Preparation and optical properties of sol–gel deposited electrochromic iron oxide films, Proc. SPIE, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, 3138 (1997), pp. 31–39.
  • N. Özer and F. Tepehan, Optical and electrochemical characteristics of sol–gel deposited iron oxide film, Sol. Energy Mater. Sol. Cells 56 (1999), pp. 141–152.10.1016/S0927-0248(98)00152-4
  • B. Orel, M. Maek, and U. Lavreni-Stangar, Amorphous Nb/Fe-oxide ion-storage films for counter electrode applications in electrochromic devices, J. Electrochem. Soc. 145 (1998), pp. 1607–1614.10.1149/1.1838525
  • S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, and A. Morisako, Chemical tuning of structure formation and combustion process in CoDy0.1Fe1.9O4 nanoparticles: Influence@pH, J. Nanopart. Res. 15 (2013), pp. 1–13.
  • Z. Bazhan, F.E. Ghodsi, and J. Mazloom, Surface morphology, optical, and electrochromic properties of nanostructured nickel ferrite (NiFe2O4) prepared by sol–gel method: Effects of Ni/Fe molar ratios, Appl. Phys. A 122 (2016), pp. 1–11.
  • M.S. Al-Hoshan, J.P. Singh, A.M. Al-Mayouf, A.A. Al-Suhybani, M.N. Shaddad, Synthesis, physicochemical and electrochemical properties of nickel ferrite spinels obtained by hydrothermal method for the oxygen evolution reaction (OER), Int. J. Electrochem. Sci 7 (2012), pp. 4959–4973.
  • W. Wang, Q. Hao, W. Lei, X. Xia, and X. Wang, Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors, J. Power Sources 269 (2014), pp. 250–259.10.1016/j.jpowsour.2014.07.010
  • B. Senthilkumar, R. Kalai Selvan, P. Vinothbabu, I. Perelshtein, and A. Gedanken, Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique, Mater. Chem. Phys. 130 (2011), pp. 285–292.10.1016/j.matchemphys.2011.06.043
  • M.K. Zate, S.F. Shaikh, V.V. Jadhav, S.D. Waghmare, D.Y. Ahn, R.S. Mane, S.-H. Han, and O.-S. Joo, Electrochemical supercapacitive properties of sprayed nickel ferrite nanostructured thin film electrode, J. Nanoeng. Nanomanuf. 4 (2014), pp. 93–97.10.1166/jnan.2014.1175
  • S. Anwar, K.S. Muthu, V. Ganesh, and N. Lakshminarasimhan, A comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routes, J. Electrochem. Soc. 158 (2011), pp. A976–A981.10.1149/1.3601863
  • S. Green, J. Backholm, P. Georén, C.G. Granqvist, and G.A. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes, Sol. Energy Mater. Sol. Cells 93 (2009), pp. 2050–2055.10.1016/j.solmat.2009.05.009
  • R.-T. Wen, G.A. Niklasson, and C.G. Granqvist, Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties, Thin Solid Films 565 (2014), pp. 128–135.10.1016/j.tsf.2014.07.004
  • C.-L. Wu, C.-K. Lin, C.-K. Wang, S.-C. Wang, and J.-L. Huang, Annealing induced structural evolution and electrochromic properties of nanostructured tungsten oxide films, Thin Solid Films 549 (2013), pp. 258–262.10.1016/j.tsf.2013.06.022
  • K. Jeyalakshmi, S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, Effect of annealing temperature on the supercapacitor behaviour of β-V2O5 thin films, Mater. Res. Bull. 48 (2013), pp. 760–766.10.1016/j.materresbull.2012.11.054
  • K.K. Purushothaman and G. Muralidharan, The effect of annealing temperature on the electrochromic properties of nanostructured NiO films, Sol. Energy Mater. Sol. Cells 93 (2009), pp. 1195–1201.10.1016/j.solmat.2008.12.029
  • B. Sarma, A.L. Jurovitzki, Y.R. Smith, R.S. Ray, and M. Misra, Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT), J. Power Sources 272 (2014), pp. 766–775.10.1016/j.jpowsour.2014.07.022
  • M. Mulato, I. Chambouleyron, E.G. Birgin, and J.M. Martínez, Determination of thickness and optical constants of amorphous silicon films from transmittance data, Appl. Phys. Lett. 77 (2000), pp. 2133–2135.10.1063/1.1314299
  • A. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939), pp. 978–982.10.1103/PhysRev.56.978
  • G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953), pp. 22–31.10.1016/0001-6160(53)90006-6
  • L. Dghoughi, B. Elidrissi, C. Bernède, M. Addou, M.A. Lamrani, M. Regragui, and H. Erguig, Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis, Appl. Surf. Sci. 253 (2006), pp. 1823–1829.10.1016/j.apsusc.2006.03.021
  • M. Srivastava, A.K. Ojha, S. Chaubey, and A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures, J. Alloys Compd. 481 (2009), pp. 515–519.10.1016/j.jallcom.2009.03.027
  • F.L. Souza, K.P. Lopes, P.A.P. Nascente, and E.R. Leite, Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting, Sol. Energy Mater. Solar Cells 93 (2009), pp. 362–368.10.1016/j.solmat.2008.11.049
  • A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed kamari, and N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process, Ceram. Int. 40 (2014), pp. 5881–5887.10.1016/j.ceramint.2013.11.032
  • B. Jacob, A. Kumar, R.P. Pant, S. Singh, and E.M. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles, Bull. Mater. Sci. 34 (2011), pp. 1345–1350.10.1007/s12034-011-0326-7
  • M. Kooti and A.N. Sedeh, Synthesis and characterization of NiFe2O4 Magnetic nanoparticles by combustion method, J. Mat. Sci. Technol. 29 (2013), pp. 34–38.
  • M.F. Al-Kuhaili, M. Saleem, and S.M.A. Durrani, Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron, J. Alloys Compd. 521 (2012), pp. 178–182.10.1016/j.jallcom.2012.01.115
  • J.C. Tauc, Optical Properties of Solids, North-Holland, Amsterdam, 1972.
  • R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E: Scientific Instruments 16 (1983), pp. 1214–1222.10.1088/0022-3735/16/12/023
  • B. Ouertani, J. Ouerfelli, M. Saadoun, H. Ezzaouia, and B. Bessaïs, Characterisation of iron oxide thin films prepared from spray pyrolysis of iron trichloride-based aqueous solution, Thin Solid Films 516 (2008), pp. 8584–8586.10.1016/j.tsf.2008.06.015
  • M.M.A. Imran, O.A. Lafi, and M. Abu-Samak, Effect of thermal annealing on some electrical properties and optical band gap of vacuum evaporated Se65Ga30In5 thin films, Vacuum 86 (2012), pp. 1589–1594.10.1016/j.vacuum.2012.03.021
  • M.M. Hafiz, A.A. Othman, M.M. El-nahass, and A.T. Al-Motasem, Composition and thermal-induced effects on the optical constants of Ge20Se80−xBix thin films, Physica B 390 (2007), pp. 348–355.10.1016/j.physb.2006.08.036
  • S. Balaji, R. Kalai Selvan, L. John Berchmans, S. Angappan, K. Subramanian, and C.O. Augustin, Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4, Mater. Sci. Eng. B 119 (2005), pp. 119–124.10.1016/j.mseb.2005.01.021
  • R. Sharma and S. Singhal, Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue, Physica B 414 (2013), pp. 83–90.10.1016/j.physb.2013.01.015
  • K. Dileep, B. Loukya, N. Pachauri, A. Gupta, and R. Datta, Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy, J. Appl. Phys. 116 (2014), pp. 103505-1–8.
  • C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P. Suresh Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, and B.V.R. Chowdari, Morphologically robust NiFe2O4 nanofibers as high capacity Li-Ion battery anode material, ACS Appl. Mat. Interfaces 5 (2013), pp. 9957–9963.
  • P. Zhu, S. Liu, J. Xie, S. Zhang, G. Cao, and X. Zhao, Facile synthesis of NiFe2O4/reduced graphene oxide hybrid with enhanced electrochemical lithium storage performance, J. Mat. Sci. Technol. 30 (2014), pp. 1078–1083.
  • Y. Ding, Y. Yang, and H. Shao, Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery, Solid State Ionics 217 (2012), pp. 27–33.10.1016/j.ssi.2012.04.021
  • L. Luo, R. Cui, H. Qiao, K. Chen, Y. Fei, D. Li, Z. Pang, K. Liu, and Q. Wei, High lithium electroactivity of electrospun CuFe2O4 nanofibers as anode material for lithium-ion batteries, Electrochim. Acta 144 (2014), pp. 85–91.10.1016/j.electacta.2014.08.048
  • E.E. Kalu, T.T. Nwoga, V. Srinivasan, and J.W. Weidner, Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide, J. Power Sources 92 (2001), pp. 163–167.10.1016/S0378-7753(00)00520-6
  • X. Zhu, C.S. Ong, X. Xu, B. Hu, J. Shang, H. Yang, S. Katlakunta, Y. Liu, X. Chen, L. Pan, J. Ding, and R.W. Li, Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins, Sci. Rep. 3 (2013), pp. 1–8.
  • M. Dhanasankar, K.K. Purushothaman, and G. Muralidharan, Effect of temperature of annealing on optical, structural and electrochromic properties of sol–gel dip coated molybdenum oxide films, Appl. Surf. Sci. 257 (2011), pp. 2074–2079.10.1016/j.apsusc.2010.09.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.