304
Views
16
CrossRef citations to date
0
Altmetric
NTMRD V

Quantifying the grain boundary resistance against slip transfer by experimental combination of geometric and stress approach using stage-I-fatigue cracks

, , &
Pages 3524-3551 | Received 11 Nov 2015, Accepted 06 Sep 2016, Published online: 29 Sep 2016

References

  • E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. London, Sect. B 64(9) (1951), pp. 747–753.10.1088/0370-1301/64/9/303
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), pp. 25–30.
  • K. Shiozawa and H. Matsushita, Crack initiation and small fatigue crack growth behaviour of beta Ti-15 V-3Cr-3Al-3Sn alloy, Proc. Fatigue ‘96, G. Lütjering and H. Nowack, eds., Berlin, 1996, pp. 301–306.
  • J. Lankford, The influence of microstructure on the growth of small fatigue cracks, Fatigue Fract. Eng. Mater. Struct. 8(2) (1985), pp. 161–175. 10.1111/j.1460-2695.1985.tb01201.x
  • K.J. Miller, The short crack problem, Fatigue Fract. Eng. Mater. Struct. 5(3) (1982), pp. 223–232. 10.1111/j.1460-2695.1982.tb01250.x
  • A. Navarro and E.R. de los Rios, A model for short fatigue crack propagation with an interpretation of the short-long crack transition, Fatigue Fract. Eng. Mater. Struct. 10(2) (1987), pp. 169–186. 10.1111/j.1460-2695.1987.tb01158.x
  • K. Tanaka, Y. Akiniwa, Y. Nakai, and R.P. Wei, Modelling of small fatigue crack growth interacting with grain boundary, Eng. Fract. Mech. 24(6) (1986), pp. 803–819. 10.1016/0013-7944(86)90266-3
  • T. Zhai, A.J. Wilkinson, and J.W. Martin, A crystallographic mechanism for fatigue crack propagation through grain boundaries, Acta Mater. 48(20) (2000), pp. 4917–4927. 10.1016/s1359-6454(00)00214-7
  • W. Ludwig, J. Y. Buffière, S. Savelli, and P. Cloetens, Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography, Acta Mater., 51(3) (2003), pp. 585–598. http://dx.doi.org/10.1016/s1359-6454(02)00320-810.1016/S1359-6454(02)00320-8
  • A.F. Knorr, M. Marx, and F. Schaefer, Crack initiation at twin boundaries due to slip system mismatch, Scr. Mater. 94 (2015), pp. 48–51. 10.1016/j.scriptamat.2014.09.015
  • Y.M. Hu, W. Floer, U. Krupp, and H.K. Christ, Microstructurally short fatigue crack initiation and growth in Ti-6.8Mo-4.5Fe-1.5Al, Mat. Sci. Eng. A 278(1–2) (2000), pp. 170–180. 10.1016/s0921-5093(99)00575-4
  • J. Polák and P. Liškutían, Nucleation and short crack growth in fatigued polycrystalline copper, Fatigue Fract. Eng. Mater. Struct. 13(2) (1990), pp. 119–133. 10.1111/j.1460-2695.1990.tb00584.x
  • Z.F. Zhang and Z.G. Wang, Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries, Acta Mater. 51(2) (2003), pp. 347–364. 10.1016/s1359-6454(02)00399-3
  • U. Krupp, O. Düber, H.J. Christ, B. Künkler, A. Schick, and C.P. Fritzen, Application of the EBSD technique to describe the initiation and growth behaviour of microstructurally short fatigue cracks in a duplex steel, J. Microsc. 213(3) (2004), pp. 313–320. 10.1111/j.0022-2720.2004.01306.x
  • Z. Shen, R.H. Wagoner, and W.A.T. Clark, Dislocation and grain boundary interactions in metals, Acta Metall. 36(12) (1988), pp. 3231–3242. 10.1016/0001-6160(88)90058-2
  • T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Prediction of slip transfer mechanisms across grain boundaries, Scr. Metall. 23(5) (1989), pp. 799–803. 10.1016/0036-9748(89)90078-1
  • M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson, Energy of slip transmission and nucleation at grain boundaries, Acta Mater. 59(1) (2011), pp. 283–296. 10.1016/j.actamat.2010.09.032
  • T.B. Britton, D. Randman, and A.J. Wilkinson, Nanoindentation study of slip transfer phenomenon at grain boundaries, J. Mater. Res. 24(03) (2009), pp. 607–615. 10.1557/jmr.2009.0088
  • P.J. Imrich, C. Kirchlechner, C. Motz, and G. Dehm, Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary, Acta Mater. 73 (2014), pp. 240–250. 10.1016/j.actamat.2014.04.022
  • W.Z. Abuzaid, M.D. Sangid, J.D. Caroll, H. Serhitoglu, and J. Lambors, Hastelloy X, Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X, J. Mech. Phys. Solids 60(6) (2012), pp. 1201–1220. 10.1016/j.jmps.2012.02.001
  • J. Kacher and I.M. Robertson, In situ and tomographic analysis of dislocation/grain boundary interactions in α-titanium, Philos. Mag. 94(8) (2014), pp. 814–829. 10.1080/14786435.2013.868942
  • Y. Guo, T.B. Britton, and A.J. Wilkinson, Slip band–grain boundary interactions in commercial-purity titanium, Acta Mater. 76 (2014), pp. 1–12. 10.1016/j.actamat.2014.05.015
  • J.D. Livingston and B. Chalmers, Multiple slip in bicrystal deformation, Acta Metall. 5(6) (1957), pp. 322–327. 10.1016/0001-6160(57)90044-5
  • E. Werner and W. Prantl, Slip transfer across grain and phase boundaries, Acta Metall. Mater. 38(3) (1990), pp. 533–537. 10.1016/0956-7151(90)90159-e
  • C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The effect of local textures on microcrack propagation in fatigued fcc metals, Mater. Sci. Eng. A 234–236 (1997), pp. 563–566. 10.1016/s0921-5093(97)00320-1
  • W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum, On the criteria for slip transmission across interfaces in polycrystals, Scr. Metall. Mater. 26(2) (1992), pp. 203–206. 10.1016/0956-716x(92)90173-c
  • C. Motz, D. Weygand, J. Senger, and P. Gumbsch, Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity, Acta Mater. 57(6) (2009), pp. 1744–1754. 10.1016/j.actamat.2008.12.020
  • S.-J. Chang and S.M. Ohr, Dislocation-free zone model of fracture, J. Appl. Phys. 52(12) (1981), pp. 7174–7181. 10.1063/1.328692
  • S.T. Shiue and S. Lee, The effect of grain size on fracture: Dislocation-free zone in the front of the finite crack tip, J. Appl. Phys. 70(6) (1991), pp. 2947–2953. 10.1063/1.349319
  • F. Schaefer, A.F. Knorr, M. Marx, and H. Vehoff, Stage-I fatigue crack studies in order to validate the dislocation-free zone model of fracture for bulk materials, Philos. Mag. 95(8) (2015), pp. 819–843. 10.1080/14786435.2015.1008067
  • B.A. Bilby and J.D. Eshelby, Dislocations and the theory of fracture, in Fracture, H. Liebowitz, eds., Academic Press, New York, 1968, pp. 99–182.
  • B.A. Bilby, A.H. Cottrell, and K.H. Swinden, The spread of plastic yield from a notch, Proc. R. Soc. A: Math. , Phys. Eng. Sci. 272 (1963), pp. 304–314. 10.1098/rspa.1963.0055
  • R.F. Byrd and M.D. Friedmann, Handbook of Elliptical Integrals for Engineers and Physicists, Springer, Berlin, 1954. 10.1007/978-3-642-52803-3
  • M. Marx, W. Schäf, H. Vehoff, and C. Holzapfel, Interaction of microcracks with selected interfaces: Focused ion beam for a systematic crack initiation, Mater. Sci. Eng. A 435–436 (2006), pp. 595–601. 10.1016/j.msea.2006.07.042
  • W. Schaef, M. Marx, H. Vehoff, A. Heckl, and P. Randelzhofer, A 3-D view on the mechanisms of short fatigue cracks interacting with grain boundaries, Acta Mater. 59(5) (2011), pp. 1849–1861. 10.1016/j.actamat.2010.11.051
  • M. Sauzay, M. Ould Moussa, Prediction of grain boundary stress fields and microcrack initiation induced by slip band impingement, Int. J. Fract. 184 (2013), pp. 215–240. http://dx.doi.org/10.1007/s10704-013-9878-410.1007/s10704-013-9878-4
  • J. P. Hirth and J. Lothe, Theory of Dislocations, Krieger publishing Company, New York, 1982.
  • P. Aerts, R. Delavignette, and S. Siems, Amelinckxj, Stacking fault energy in silicon, J. Appl. Phys. 33 (1962), pp. 3078–3080. 10.1063/1.1728570
  • T.R. Duncan and D. Kuhlmann-Wilsdorf, Shear stresses and strain energies of edge dislocations in anisotropic cubic crystals, J. Appl. Phys. 38 (1967), pp. 313–322. 10.1063/1.1708973
  • T.R. Duncan, D. Kuhlmann-Wilsdorf, and J.T. Moore, New data on the shear stresses and energies of ½ 〈1 1 0〉, {1 1 1} edge dislocations in elastically anisotropic fcc metal, J. Appl. Phys. 39 (1968), pp. 173–176. 10.1063/1.1655727

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.