547
Views
10
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Classification of materials with divergent magnetic Grüneisen parameter

Pages 3415-3427 | Received 26 Jul 2016, Accepted 08 Sep 2016, Published online: 22 Sep 2016

References

  • L. Zhu, M. Garst, A. Rosch, and Q. Si, Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points, Phys. Rev. Lett. 91 (2003), pp. 1–4. 066404.
  • M. Garst and A. Rosch, Sign change of the Grüneisen parameter and magnetocaloric effect near quantum critical points, Phys. Rev. B 72 (2005), pp. 1–10. 205129.
  • P.Gegenwart, Grüneisen parameter studies on heavy fermion quantum criticality, Rep. Prog. Phys. in press. Available at arXiv:1608.04907.
  • R. Küchler, N. Oeschler, P. Gegenwart, T. Cichorek, K. Neumaier, O. Tegus, C. Geibel, J.A. Mydosh, F. Steglich, L. Zhu, and Q. Si, Divergence of the Grüneisen ratio at quantum critical points in heavy fermion metals, Phys. Rev. Lett. 91 (2003), pp. 1–4. 066405.
  • R. Küchler, P. Gegenwart, K. Heuser, E.-W. Scheidt, G.R. Stewart, and F. Steglich, Grüneisen ratio divergence at the quantum critical point in CeCu6-xAgx, Phys. Rev. Lett. 93 (2004), pp. 1–4. 096402.
  • R. Küchler, P. Gegenwart, F. Weickert, N. Oeschler, T. Cichorek, M. Nicklas, N. Carocca-Canales, C. Geibel, and F. Steglich, Thermal expansion and Grüneisen ratio near quantum critical points, Physica B 378–380 (2006), pp. 36–39.
  • R. Küchler, P. Gegenwart, C. Geibel, and F. Steglich, Systematic study of the Grüneisen ratio near quantum critical points, Sci. Technol. Adv. Mater. 8 (2007), pp. 428–433.
  • P. Gegenwart, Y. Tokiwa, J.G. Donath, R. Küchler, C. Bergmann, H.S. Jeevan, E.D. Bauer, J.L. Sarrao, C. Geibel, and F. Steglich, Divergence of the Grüneisen parameter and magnetocaloric effect at heavy fermion quantum critical points, J. Low Temp. Phys. 161 (2010), pp. 117–133.
  • Y. Tokiwa, T. Radu, C. Geibel, F. Steglich, and P. Gegenwart, Magnetic Grüneisen ratio at the field-induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 102 (2009), pp. 1–4. 066401.
  • J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pepin, and P. Coleman, The break-up of heavy electrons at a quantum critical point, Nature 424 (2003), pp. 524–527.
  • Y. Tokiwa, M. Garst, P. Gegenwart, S.L. Bud’ko, and P.C. Canfield, Quantum bicriticality in the heavy-fermion metamagnet YbAgGe, Phys. Rev. Lett. 111 (2013), pp. 1–5. 116401.
  • Y. Tokiwa, M. Mchalwat, R.S. Perry, and P. Gegenwart, Multiple metamagnetic quantum criticality in Sr3Ru2O7, Phys. Rev. Lett. 116 (2016), pp. 1–5. 226402.
  • S. Manni, Y. Tokiwa, and P. Gegenwart, Effect of nonmagnetic dilution in the honeycomb-lattice iridates Na2IrO3 and Li2IrO3, Phys. Rev. B 89 (2014), pp. 1–5. 241102(R).
  • Y. Tokiwa, B. Piening, H.S. Jeevan, S.L. Bud’ko, P.C. Canfield, and P. Gegenwart, Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling, Sci. Adv. 2 (2016), pp. 1–6. e1600835.
  • Y. Tokiwa, E.D. Bauer, and P. Gegenwart, Zero-field quantum critical point in CeCoIn5, Phys. Rev. Lett. 111 (2013), pp. 1–5. 107003.
  • Y. Tokiwa, C. Stingl, M.-S. Kim, T. Takabatake, and P. Gegenwart, Characteristic signatures of quantum criticality driven by geometrical frustration, Sci. Adv. 1 (2015), pp. 1–6. e1500001.
  • N. Doiron-Leyraud, I.R. Walker, L. Taillefer, M.J. Steiner, S.R. Julian, and G.G. Lonzarich, Fermi-liquid breakdown in the paramagnetic phase of a pure metal, Nature 425 (2003), pp. 595–599.
  • C. Pfleiderer, P. Böni, T. Keller, U.K. Rößler, and A. Rosch, Non-Fermi liquid metal without quantum criticality, Science 316 (2007), pp. 1871–1874.
  • Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A.H. Nevidomskyy, and P. Coleman, Quantum criticality without tuning in the mixed valence compound β-YbAlB4, Science 331 (2011), pp. 316–319.
  • K. Deguchi, S. Matsukawa, N.K. Sato, T. Hattori, K. Ishida, H. Takakura, and T. Ishimasa, Quantum critical state in a magnetic quasicrystal, Nat. Mater. 11 (2012), pp. 1013–1016.
  • A. Sakai, K. Kitagawa, K. Matsubayashi, M. Iwatani, and P. Gegenwart, T/B scaling without quasiparticle mass divergence: YbCo2Ge4, Phys. Rev. B 94 (2016), pp. 1–4. 041106(R).
  • Y. Tokiwa, J.J. Ishikawa, S. Nakatsuji, and P. Gegenwart, Quantum criticality in a metallic spin liquid, Nat. Mater. 13 (2014), pp. 356–359.
  • Y. Singh, Y. Tokiwa, J. Dong, and P. Gegenwart, Spin liquid close to a quantum critical point in Na4Ir3O8, Phys. Rev. B 88 (2013), pp. 1–5. 220413(R).
  • B. Wolf, Y. Tsui, D. Jaiswal-Nagar, U. Tutsch, A. Honecker, K. Removic-Langer, G. Hofmann, A. Prokofiev, W. Assmus, G. Donath, and M. Lang, Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point, Proc. Natl. Acad. Sci. 108 (2011), pp. 6862–6866.
  • H. Ryll, K. Kiefer, Ch Rüegg, S. Ward, K.W. Kr\"{a}mer, D. Biner, P. Bouillot, E. Coira, T. Giamarchi, C. Kollath, Magnetic entropy landscape and Grüneisen parameter of a quantum spin ladder, Phys. Rev. B 89 (2014), pp. 1–5. 144416.
  • L. Galisova and J. Strecka, Magnetic Grüneisen parameter and magnetocaloric properties of a coupled spin-electron double-tetrahedral chain, Phys. Lett. A 379 (2015), pp. 2474–2478.
  • A.J. Millis, A.J. Schofield, G.G. Lonzarich, and S.A. Grigera, Metamagnetic quantum criticality in metals, Phys. Rev. Lett. 88 (2002), pp. 1–4. 217204.
  • S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P. Mackenzie, Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7, Science 294 (2001), pp. 329–332.
  • P. Gegenwart, F. Weickert, M. Garst, R.S. Perry, and Y. Maeno, Metamagnetic quantum criticality in Sr3Ru2O7 studied by thermal expansion, Phys. Rev. Lett. 96 (2006), pp. 1–4. 136402.
  • Q. Si, Quantum criticality and global phase diagram of magnetic heavy fermions, Phys. Status Solidi B 247 (2010), pp. 476–484.
  • M. Vojta, From itinerant to local-moment antiferromagnetism in Kondo lattices: adiabatic continuity versus quantum phase transitions, Phys. Rev. B 78 (2008), pp. 1–8. 125109.
  • A. Dönni, G. Ehlers, H. Maletta, P. Fischer, H. Kitazawa, and M. Zolliker, Geometrically frustrated magnetic structures of the heavy-fermion compound CePdAl studied by powder neutron diffraction, J. Phys.: Condens. Matter. 8 (1996), pp. 11213–11229.
  • V. Fritsch, N. Bagrets, G. Goll, W. Kittler, M.J. Wolf, K. Grube, C.-L. Huang, and H.v. Löhneysen, Approaching quantum criticality in a partially geometrically frustrated heavy-fermion metal, Phys. Rev. B 89 (2014), pp. 1–6. 054416.
  • A. Sakai, S. Lucas, P. Gegenwart, O. Stockert, H.v. Löhneysen, and V. Fritsch, Signature of frustrated moments in quantum critical CePd1–xNixAl, preprint (2016), Available at arXiv:1609.00816.
  • S.L. Bud’ko, E. Morosan, and P.C. Canfield, Magnetic field induced non-Fermi-liquid behavior in YbAgGe single crystals, Phys. Rev. B 69 (2004), pp. 1–8. 014415.
  • M.S. Kim, Y. Echizen, K. Umeo, S. Kobayashi, M. Sera, P.S. Salamakha, O.L. Sologub, T. Takabatake, X. Chen, T. Tayama, T. Sakakibara, M.H. Jung, and M.B. Maple, Low-temperature anomalies in magnetic, transport, and thermal properties of single-crystal CeRhSn with valence fluctuations, Phys. Rev. B 68 (2003), pp. 1–7. 054416.
  • S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. van Duijn, L. Balicas, J.N. Millican, and R.T. Macaluso, Julia Y. Chan, Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice Pr2Ir2O7, Phys. Rev. Lett. 96 (2006), pp. 1–4. 087204.
  • C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.T. Thompson, and Z. Fisk, Heavy-fermion superconductivity in CeCoIn5 at 2.3 K, J. Phys. Condens. Matter 13 (2001), pp. L337–L342.
  • A. Bianchi, R. Movshovich, I. Vekhter, P.G. Pagliuso, and J.L. Sarrao, Avoided antiferromagnetic order and quantum critical point in CeCoIn5, Phys. Rev. Lett. 91 (2003), pp. 1–4. 257001.
  • J. Paglione, M.A. Tanatar, D.G. Hawthorn, E. Boaknin, R.W. Hill, F. Ronning, M. Sutherland, L. Taillefer, C. Petrovic, and P.C. Canfield, Field-induced quantum critical point in CeCoIn5, Phys. Rev. Lett. 91 (2003), pp. 1–4. 246405.
  • S. Singh, C. Capan, M. Nicklas, M. Rams, A. Gladun, H. Lee, J.F. DiTusa, Z. Fisk, F. Steglich, and S. Wirth, Probing the quantum critical behavior of CeCoIn5 via Hall effect measurements, Phys. Rev. Lett. 98 (2007), pp. 1–4. 057001.
  • J.G. Donath, F. Steglich, E.D. Bauer, J.L. Sarrao, and P. Gegenwart, Dimensional crossover of quantum critical behavior in CeCoIn5, Phys. Rev. Lett. 100 (2008), pp. 1–4. 136401.
  • S. Zaum, K. Grube, R. Schäfer, E.D. Bauer, J.D. Thompson, and H.v. Löhneysen, Towards the identification of a quantum critical line in the (p, B) phase diagram of CeCoIn5 with thermal-expansion measurements, Phys. Rev. Lett. 106 (2011), pp. 1–4. 087003.
  • T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji, Strange metal without magnetic criticality, Science 349 (2015), pp. 506–509.
  • K. Kitagawa, Y. Kishimoto, M. Iwatani, T. Nishioka, M. Matsumura, K. Matsubayashi, Y. Uwatoko, S. Maki, J.-I. Yamaura, T. Hattori, and K. Ishida, Quantum criticality based on large Ising spins: YbCo2Ge4 with new 1-2-4 structure type, preprint (2014), Available at arXiv:1407.8274.
  • A. Wörl, S. Matsukawa, N.K. Sato, and P. Gegenwart, unpublished results.
  • Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Spin-liquid state in the {\it S}=1/2 hyperkagome antiferromagnet Na4Ir3O8, Phys. Rev. Lett. 99 (2007), pp. 1–4. 137207.
  • A.C. Shockley, F. Bert, J.-C. Orain, Y. Okamoto, and P. Mendels, Frozen state and spin liquid physics in Na4Ir3O8: an NMR study, Phys. Rev. Lett. 115 (2015), pp. 1–5. 047201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.