960
Views
28
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles study of structural, mechanical, lattice dynamical and thermal properties of nodal-line semimetals ZrXY (X=Si,Ge; Y=S,Se)

&
Pages 175-186 | Received 15 Jun 2016, Accepted 13 Oct 2016, Published online: 31 Oct 2016

References

  • H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28 (2016), p. 303001.
  • T. Liang, Q. Gibson, M.N. Ali, M. Liu, R.J. Cava, and N.P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14 (2015), pp. 280–284.
  • M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, and R.J. Cava, Large, non-saturating magnetoresistance in WTe2, Nature 514 (2014), pp. 205–208.
  • Y. Kim, B.J. Wieder, C. L. Kane, and A.M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115 (2015), p. 036806.
  • A. Zyuzin, and A.A. Burkov, Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B. 86 (2012), p. 115133.
  • A.C. Potter, I. Kimchi, and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun. 5 (2014). Article no: 5161.
  • N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D.A. Bonn, W.N. Hardy, and L. Taillefer, Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor, Nature 447 (2007), pp. 565–568.
  • C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92 (2015), p. 081201.
  • H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides, Phys. Rev. B 93 (2016), p. 201114.
  • S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B.K. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, and M.Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349 (2015), pp. 613–617.
  • B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phy. Rev. X 5 (2015), p. 031013.10.1103/PhysRevX.5.031013
  • N. Xu, H.M. Weng, B.Q. Lv, C.E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N.C. Plumb, M. Radovic, G. Autès, O.V. Yazyev, Z. Fang , X. Dai , T. Qian , J. Mesot , H. Ding, and M. Shi, Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun. 7 (2016), p. 11006.
  • S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V.N. Strocov, D.S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B.K. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Zahid Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys. 11 (2015), pp. 748–754.
  • Y. Sun, S.-C. Wu, M.N. Ali, C. Felser, and B. Yan, Prediction of Weyl semimetal in orthorhombic MoTe2, Phys. Rev. B 92 (2015), p. 161107.
  • L. Huang, T.M. McCormick, M. Ochi, Z. Zhao, M.-T. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, and A. Kaminski, Spectroscopic evidence for type II Weyl semimetal state in MoTe2, arXiv preprint arXiv:1603.06482 (2016).
  • C. Wang, Y. Zhang, J. Huang, S. Nie, G. Liu, A. Liang, Y. Zhang, B. Shen, J. Liu, C. Hu, Y. Ding, D. Liu, Y. Hu, S. He, L. Zhao, L. Yu, J. Hu, J. Wei, Z. Mao, Y. Shi, X. Jia, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z. Fang, Z. Xu, C. Chen, and X.J. Zhou, Spectroscopic Evidence of Type II Weyl Semimetal State in WTe2, arXiv preprint arXiv:1604.04218 (2016).
  • S.-Y. Xu, N. Alidoust, G. Chang, H. Lu, B. Singh, I. Belopolski, D. Sanchez, X. Zhang, G. Bian, H. Zheng, M.-A. Husanu, Y. Bian, S.-M. Huang, C.-H. Hsu, T.-R. Chang, H.-T. Jeng, A. Bansil, V.N. Strocov, H. Lin, S. Jia, and M.Z. Hasan, Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials, arXiv preprint arXiv:1603.07318 (2016).
  • Y. Wu, L.-L. Wang, E. Mun, D.D. Johnson, D. Mou, L. Huang, Y. Lee¸ S. L. Bud’ko, P.C. Canfield, and A. Kaminski, Dirac node arcs in PtSn4, Nat. Phys. 12 (2016), pp. 667–671.
  • G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert¸ C.-K. Chiu¸ S.-M. Huang¸ G. Chang¸ I. Belopolski¸ D.S. Sanchez¸ M. Neupane¸ N. Alidoust, C. Liu, B.K. Wang, C.-C. Lee, H.-T. Jeng¸ C. Zhang¸ Z. Yuan¸ S. Jia, A. Bansil, F. Chou, H. Lin, and M. Zahid Hasan, Topological nodal-line fermions in spin-orbit metal PbTaSe2, Nat. Commun. 7 (2016), p. 10556.
  • J. Hu, Z. Tang, J. Liu, Y. Zhu, J. Wei, and Z. Mao, Evidence of Dirac cones with 3D character probed by dHvA oscillations in nodal-line semimetal ZrSiS, arXiv preprint arXiv:1604.01567 (2016), p. 10556.
  • J. Hu, Z. Tang, J. Liu, X. Liu, Y. Zhu, D. Graf, K. Myhro, S. Tran, C.N. Lau, J. Wei, and Z. Mao, Topological nodal-line fermions in ZrSiSe and ZrSiTe, Phys. Rev. Lett. 117 (2016), p. 016602.
  • L.M. Schoop, M.N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S.S.P. Parkin, B.V. Lotsch, and C.R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7 (2016), p. 11696.
  • X. Wang, X. Pan, M. Gao¸ J. Yu¸ J. Jiang, J. Zhang, H. Zuo, M. Zhang, Z. Wei, W. Niu, Z. Xia, X. Wan, Y. Chen, F. Song, Y. Xu, B. Wang, G. Wang, and R. Zhang, Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in ZrSiS, Adv. Elect. Mater. 2 (2016), p. 1600228.
  • M. Neupane, I. Belopolski, M. Mofazzel Hosen, D.S. Sanchez, R. Sankar, M. Szlawska, S.-Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P.M. Oppeneer, D. Kaczorowski, F. Chou, M. Zahid Hasan, and T. Durakiewicz, Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B 93 (2016), p. 201104.
  • Q. Xu, Z. Song, S. Nie, H. Weng, Z. Fang, and X. Dai, Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure, Phys. Rev. B 92 (2015), p. 205310.
  • R. Lou, J.-Z. Ma, Q.-N. Xu¸ B.-B. Fu¸ L.-Y. Kong, Y.-G. Shi, P. Richard, H.-M. Weng, Z. Fang, S.-S. Sun, Q. Wang, H.-C. Lei, T. Qian, H. Ding, and S.-C. Wang, Emergence of topological bands on the surface of ZrSnTe crystal, Phys. Rev. B 93 (2016), p. 241104.
  • H. Shao, X. Tan, J. Jiang, and H. Jiang, First-principles study on the elastic properties of Cu2GeSe3, Europhys. Lett. 113 (2016), p. 26001.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli¸ G.L. Chiarotti¸ M. Cococcioni¸ I. Dabo¸ A.D. Corso, S. de Gironcoli¸ S. Fabris¸ G. Fratesi¸ R. Gebauer¸ U. Gerstmann, C. Gougoussis, A. Kokalj¸ M. Lazzeri¸ L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini¸ A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter. 21 (2009), p. 395502.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.10.1103/PhysRevLett.77.3865
  • K.F. Garrity, J.W. Bennett, K.M. Rabe, and D. Vanderbilt, Pseudopotentials for high-throughput DFT calculations, Comput. Mater. Sci. 81 (2014), pp. 446–452.10.1016/j.commatsci.2013.08.053
  • T.H. Fischer and J. Almlof, General methods for geometry and wave function optimization, J. Phys. Chem. 96 (1992), pp. 9768–9774.10.1021/j100203a036
  • B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen, Relaxation of crystals with the Quasi-Newton method, J. Comput. Phys. 131 (1997), pp. 233–240.10.1006/jcph.1996.5612
  • W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter 21 (2009), p. 084204.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.10.1103/PhysRevB.13.5188
  • R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, ElaStic: A tool for calculating second-order elastic constants from first principles, Comput. Phys. Commun. 184 (2013), pp. 1861–1873.10.1103/PhysRevB.13.5188
  • S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001), pp. 515–562.10.1103/RevModPhys.73.515
  • K. Momma and F. Izumi, VESTA: A three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008), pp. 653–658.10.1107/S0021889808012016
  • C. Wang and T. Hughbanks, Main group element size and substitution effects on the structural dimensionality of zirconium tellurides of the ZrSiS type, Inorg. Chem. 34 (1995), pp. 5524–5529.10.1021/ic00126a024
  • F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Nat. Acad. Sci 30 (1944), pp. 244–247.10.1073/pnas.30.9.244
  • J.P. Watt and L. Peselnick, Clarification of the Hashin–Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries, J. Appl. Phys. 51 (1980), pp. 1525–1531.10.1063/1.327804
  • U.F. Ozyar, E. Deligoz, and K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds, Solid State Sci. 40 (2015), pp. 92–100.10.1016/j.solidstatesciences.2015.01.001
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London, Sect. A 65 (1952), p. 349.10.1088/0370-1298/65/5/307
  • W. Voigt Lehrbuch der Kristallphysik [Textbook of Crystal Physics], BG Teubner, Leipzig, 1928. Appendix II.
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle [Calculation of the flow limit of mixed crystals on the basis of the plasticity condition for single crystals], ZAMM – J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 9 (1929), pp. 49–58.10.1002/(ISSN)1521-4001
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, Dublin Philos. Mag. J. Sci. 45 (1954), pp. 823–843.10.1080/14786440808520496
  • B.G. Yalcin, B. Salmankurt, and S. Duman, Investigation of structural, mechanical, electronic, optical, and dynamical properties of cubic BaLiF3, BaLiH3, and SrLiH3, Mater. Res. Exp. 3 (2016), p. 036301.
  • U. Koroglu, S. Cabuk, and E. Deligoz, First-principles study of structural, elastic, electronic and vibrational properties of BiCoO3, Solid State Sci. 34 (2014), pp. 1–7.10.1016/j.solidstatesciences.2014.04.015
  • R.C. Powell, Symmetry, group theory, and the physical properties of crystals, Springer-Verlag, New York, 2010.10.1007/978-1-4419-7598-0
  • S. Baroni, P. Giannozzi, and E. Isaev, Density functional perturbation theory for quasiharmonic calculations, Rev. Mineral. Geochem. 71 (2010), pp. 39–57.10.2138/rmg.2010.71.3
  • B. Salmankurt and S. Duman, Investigation of the structural, mechanical, dynamical and thermal properties of CsCaF3 and CsCdF3, Mater. Res. Express 3 (2016), p. 045903.10.2138/rmg.2010.71.3
  • E. Deligoz, U.F. Ozyar, and H.B. Ozisik, Theoretical investigations on vibrational properties and thermal conductivities of ternary antimonides TiXSb, ZrXSb and HfXSb (X= Si, Ge), Philos. Mag. 3 (2016), pp. 1–12.10.2138/rmg.2010.71.3
  • H. Peng, C.L. Wang, J.C. Li¸ R.Z. Zhang, M.X. Wang, H.C. Wang, Y. Sun, and M. Sheng, Lattice dynamic properties of BaSi2 and BaGe2 from first principle calculations, Phys. Lett. A 374 (2010), pp. 3797–3800.10.1016/j.physleta.2010.07.037
  • M. De Podesta, Understanding the properties of matter, CRC Press, New York, 2002.
  • S. Bağcı, H.M. Tütüncü, S. Duman, E. Bulut, M. Özacar, and G.P. Srivastava, Physical properties of the cubic spinel LiMn2O4, J. Phys. Chem. Solids 75 (2014), pp. 463–469.10.1016/j.jpcs.2013.12.005
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992), p. 6131.10.1103/PhysRevB.46.6131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.