2,158
Views
37
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

On the multiferroic skyrmion-host GaV4S8

, , , , ORCID Icon, , , & ORCID Icon show all
Pages 3428-3445 | Received 17 Jun 2016, Accepted 22 Oct 2016, Published online: 10 Nov 2016

References

  • H. Barz, New ferromagnetic molybdenum spinels, Mater. Res. Bull. 8 (1973), pp. 983–988.10.1016/0025-5408(73)90083-4
  • C. Perrin, R. Chevrel, and M. Sergent, Sur un nouveau cluster tétraédrique de molybdène dans les chalcogénures MMo4S8 (M = Al, Ga), GaMo4Se8 et dans les thiohalogénures MoSX (X = Cl, Br, I) [New tetrahedral cluster of molybbenum in chalcogenides MMo4S8 (M = Al, Ga), GaMo4Se8 and thiohalides MoSX (X = Cl, Br, I)], C. R. Acad. Sc. Paris C 280 (1975), pp. 949–951.
  • D. Brasen, J.M. Vandenberg, M. Robbins, R.H. Willens, W.A. Reed, R.C. Sherwood, and X.J. Pinder, Magnetic and crystallographic properties of spinels of the type AxB2S4 where A = Al, Ga, and B = Mo, V, Cr, J. Solid State Chem. 13 (1975), pp. 298–303.10.1016/0022-4596(75)90141-3
  • M.M. Abd-Elmeguid, B. Ni, D.I. Khomskii, R. Pocha, D. Johrendt, X. Wang, and K. Syassen, Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure, Phys. Rev. Lett. 93 (2004), p. 126403.10.1103/PhysRevLett.93.126403
  • H. Müller, W. Kockelmann, and D. Johrendt, The magnetic structure and electronic ground states of Mott insulators GeV4S8 and GaV4S8, Chem. Mater. 18 (2006), pp. 2174–2180.10.1021/cm052809m
  • A. Camjayi, C. Acha, R. Weht, M.G. Rodríguez, B. Corraze, E. Janod, L. Cario, and M.J. Rozenberg, First-order insulator-to-metal Mott transition in the paramagnetic 3D system GaTa4Se8, Phys. Rev. Lett. 113 (2014), p. 086404.10.1103/PhysRevLett.113.086404
  • A.K. Rastogi, A. Berton, J. Chaussy, R. Tournier, M. Potel, R. Chevrel, and M. Sergent, Itinerant electron magnetism in the Mo4 tetrahedral cluster compounds GaMo4S8, GaMo4Se8, and GaMo4Se4Te4, J. Low Temp. Phys. 52 (1983), pp. 539–557.10.1007/BF00682130
  • A.K. Rastogi and E.P. Wohlfarth, Magnetic field-induced transitions in the Mo4 cluster compounds GaMo4S8 and GaMo4Se8 showing heavy fermion behaviour, Phys. Stat. Sol. (b) 142 (1987), pp. 569–573.10.1002/(ISSN)1521-3951
  • V. Ta Phuoc, C. Vaju, B. Corraze, R. Sopracase, A. Perucchi, C. Marini, P. Postorino, M. Chligui, S. Lupi, E. Janod, and L. Cario, Optical conductivity measurements of GaTa4Se8 under high pressure: Evidence of a bandwidth-controlled insulator-to-metal Mott transition, Phys. Rev. Lett. 110 (2013), p. 037401.10.1103/PhysRevLett.110.037401
  • E. Dorolti, L. Cario, B. Corraze, E. Janod, C. Vaju, H.-J. Koo, E. Kan, and M.-H. Whangbo, Half-metallic ferromagnetism and large negative magnetoresistance in the new lacunar spinel GaTi3VS8, J. Am. Chem. Soc. 132 (2010), pp. 5704–5710.10.1021/ja908128b
  • H.-S. Kim, J. Im, M.J. Han, and H. Jin, Spin-orbital entangled molecular jeff states in lacunar spinel compounds, Nature Commun. 5 (2014), p. 3988.
  • V. Dubost, T. Cren, C. Vaju, L. Cario, B. Corraze, E. Janod, F. Debontridder, and D. Roditchev, Resistive switching at the nanoscale in the Mott insulator compound GaTa4Se8, Nano Lett. 13 (2013), pp. 3648–3653.10.1021/nl401510p
  • P. Stoliar, L. Cario, E. Janod, B. Corraze, C. Guillot-Deudon, S. Salmon-Bourmand, V. Guiot, J. Tranchant, and M. Rozenberg, Universal electric-field-driven resistive transition in narrow-gap Mott insulators, Adv. Mater. 25 (2013), pp. 3222–3226.10.1002/adma.201301113
  • V. Guiot, L. Cario, E. Janod, B. Corraze, V. Ta Phuoc, M. Rozenberg, P. Stoliar, T. Cren, and D. Roditchev, Avalanche breakdown in GaTa4Se8-xTex narrow-gap Mott insulators, Nat. Commun. 4 (2013), p. 1722.10.1038/ncomms2735
  • L. Cario, C. Vaju, B. Corraze, V. Guiot, and E. Janod, Electric-field-induced resistive switching in a family of Mott insulators: Towards a new class of RRAM memories, Adv. Mater. 22 (2010), pp. 5193–5197.10.1002/adma.201002521
  • K. Singh, C. Simon, E. Cannuccia, M.-B. Lepetit, B. Corraze, E. Janod, and L. Cario, Orbital-ordering-driven multiferroicity and magnetoelectric coupling in GeV4S8, Phys. Rev. Lett. 113 (2014), p. 137602.10.1103/PhysRevLett.113.137602
  • E. Ruff, S. Widmann, P. Lunkenheimer, V. Tsurkan, S. Bordács, I. Kézsmárki, and A. Loidl, Multiferroicity and skyrmions carrying electric polarization in GaV4S8, Sci. Adv. 1 (2015), p. e1500916.10.1126/sciadv.1500916
  • Z. Wang, E. Ruff, M. Schmidt, V. Tsurkan, I. Kézsmárki, P. Lunkenheimer, and A. Loidl, Polar dynamics at the Jahn–Teller transition in ferroelectric GaV4S8, Phys. Rev. Lett. 115 (2015), p. 207601.10.1103/PhysRevLett.115.207601
  • S. Harris, Structure, bonding and electron counts in cubane-type clusters having M4S4, M2M′2S4 and MM′3S4 cores, Polyhedron 8 (1989), pp. 2843–2882.10.1016/S0277-5387(00)86283-X
  • R. Pocha, D. Johrendt, and R. Pöttgen, Electronic and structural instabilities in GaV4S8 and GaMo4S8, Chem. Mater. 12 (2000), pp. 2882–2887.10.1021/cm001099b
  • Y. Sahoo and A.K. Rastogi, Evidence of hopping conduction in the V4-cluster compound GaV4S8, J. Phys.: Condens. Matter 5 (1993), pp. 5953–5962.
  • C.S. Yadav, A.K. Nigam, and A.K. Rastogi, Thermodynamic properties of ferromagnetic Mott-insulator GaV4S8, Phys. B 403 (2008), pp. 1474–1475.10.1016/j.physb.2007.10.172
  • H. Nakamura, H. Chudo, and M. Shiga, Structural transition of the tetrahedral metal cluster: Nuclear magnetic resonance study of GaV4S8, J. Phys.: Condens. Matter 17 (2005), pp. 6015–6024.
  • I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L.M. Eng, J.S. White, H.M. Rønnow, C.D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loidl, Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, Nat. Mater. 14 (2015), pp. 1116–1122.10.1038/nmat4402
  • U.K. Rößler, A.N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals, Nature 442 (2006), pp. 797–801.
  • S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral magnet, Science 323 (2009), pp. 915–919.10.1126/science.1166767
  • X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465 (2010), pp. 901–904.10.1038/nature09124
  • S. Seki, X.Z. Yu, S. Ishiwata, and Y. Tokura, Observation of skyrmions in a multiferroic material, Science 336 (2012), pp. 198–201.10.1126/science.1214143
  • S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys. 7 (2011), pp. 713–718.10.1038/nphys2045
  • S. Riegel and G. Weber, A dual-slope method for specific heat measurements, J. Phys. E: Sci. Instrum. 19 (1986), pp. 790–791.10.1088/0022-3735/19/10/006
  • R. Böhmer, M. Maglione, P. Lunkenheimer, and A. Loidl, Radio-frequency dielectric measurements at temperatures from 10 to 450 K, J. Appl. Phys. 65 (1989), pp. 901–904.10.1063/1.342990
  • D. Ehlers, I. Stasinopoulos, I. Kézsmárki, T. Fehér, V. Tsurkan, H.-A. Krug von Nidda, D. Grundler, and A. Loidl, Exchange anisotropy in the skyrmion host GaV4S8, unpublished.
  • N.F. Mott and E.A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford, 1979.
  • Y. Sahoo and A.K. Rastogi, AC and non-linear conduction in V4 cluster compounds GaV4S8 and Ga0.98Zn0.02V4S8: Evidence for a Wigner glass, Phys. B 215 (1995), pp. 233–242.10.1016/0921-4526(95)00407-Z
  • Y. Sahoo and A.K. Rastogi, Electrical conductivity and thermopower of Ga1-xZnxV4S8, J. Phys. Chem. Sol. 57 (1996), pp. 467–474.10.1016/0022-3697(95)00245-6
  • I. Naik, S. Hansda, and A.K. Rastogi, Electronic properties of GaV4S8: A percolation approach, Pramana 86 (2016), pp. 127–134.10.1007/s12043-015-1014-8
  • P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Loidl, Origin of apparent colossal dielectric constants, Phys. Rev. B 66 (2002), p. 052105.10.1103/PhysRevB.66.052105
  • P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, and A. Loidl, Colossal dielectric constants in transition-metal oxides, Eur. Phys. J. Special Topics 180 (2010), pp. 61–89.
  • M.E. Lines and A.M. Glass, Principles and applications of ferroelectric and related materials, Clarendon Press, Oxford, 1996.
  • T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426 (2003), pp. 55–58.10.1038/nature02018
  • B. Keimer, Transition metal oxides: Ferroelectricity driven by orbital order, Nat. Mater. 5 (2006), pp. 933–934.10.1038/nmat1783
  • K. Xu and H.J. Xiang, Unusual ferroelectricity induced by the Jahn–Teller effect: A case study on lacunar spinel compounds, Phys. Rev. B 92 (2015), p. 121112(R).10.1103/PhysRevB.92.121112
  • P. Barone, K. Yamauchi, and S. Picozzi, Jahn–Teller distortions as a novel source of multiferroicity, Phys. Rev. B 92 (2015), p. 014116.10.1103/PhysRevB.92.014116
  • D. Ehlers, I. Stasinopoulos, V. Tsurkan, H.-A. Krug von Nidda, T. Fehér, A. Leonov, I. Kézsmárki, D. Grundler, and A. Loidl, Skyrmion dynamics under uniaxial anisotropy, Phys. Rev. B 94 (2016), p. 014406.10.1103/PhysRevB.94.014406

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.