145
Views
6
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Confinement effects on the spin potential of first row transition metal cations

, &
Pages 284-297 | Received 08 Jun 2016, Accepted 03 Nov 2016, Published online: 18 Nov 2016

References

  • A. Sommerfeld and H. Welker, Artificial limiting conditions in the Kepler problem, Ann. Phys. 32 (1938), pp. 56–65.
  • S.R. de Groot and C.A. Ten Seldam, On the energy levels of a model of the compressed hydrogen atom, Physica 12 (1946), pp. 669–682.
  • A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, New York, 1996.
  • R.G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1994.
  • E. García-Hernández, C. Díaz-García, R. Vargas, and J. Garza, Implementation of the electron propagator to second order on GPUs to estimate the ionization potentials of confined atoms, J. Phys. B: At. Mol. Opt. Phys. 47 (2014), 185007 (7 p.).
  • E.V. Ludeña, SCF Hartree–Fock calculations of ground state wavefunctions of compressed atoms, J. Chem. Phys. 69 (1978), pp. 1770–1775.
  • K.D. Sen, J. Garza, R. Vargas, and A. Vela, Atomic ionization radii using Janak’s theorem, Chem. Phys. Lett. 325 (2000), pp. 29–32.
  • P.K. Chattaraj and U.J. Sarkar, Effect of Spherical confinement on chemical reactivity, Phys. Chem. A 107 (2003), pp. 4877–4882.
  • D. Guerra, R. Vargas, P. Fuentealba, and J. Garza, Modeling pressure effects on the electronic properties of Ca, Sr, and Ba by the confined atoms model, Adv. Quantum Chem. 58 (2009), pp. 1–12.
  • J. Garza, R. Vargas, N. Aquino, and K.D. Sen, DFT reactivity indices in confined many-electron atoms, J. Chem. Sci. 117 (2005), pp. 379–386.
  • J. Connerade and V. Dolmatov, Controlling orbital collapse from inside and outside a transition element, J. Phys. B: At. Mol. Opt. Phys. 31 (1998), pp. 3557–3564.
  • J. Connerade, V. Dolmatov, and P.A. Lakshmi, The filling of shells in compressed atoms, J. Phys. B: At. Mol. Opt. Phys. 33 (2000), pp. 251–264.
  • K.D. Sen, J. Garza, R. Vargas, and A. Vela, Effective pressure induced electronic transition in spherically confined alkali metal atoms, Proc. Indian Nat. Sci. Acad. 70A (2004), pp. 675–681.
  • O. Kahn, Molecular Magnetism, VCH Publishers Inc, New York, 1993.
  • J.S. Griffith, On the stabilities of transition metal complexes-I theory of the energies, J. Inorg. Nucl. Chem. 2 (1956), pp. 1–10.
  • J.S. Griffith, On the stabilities of transition metal complexes-II magnetic and thermodynamic properties, J. Inorg. Nucl. Chem. 2 (1956), pp. 229–236.
  • M. Galván and R. Vargas, Spin potential in Kohn–Sham theory, J. Phys. Chem. 96 (1992), pp. 1625–1630.
  • J.F. Janak, Proof that ∂E/∂ni = εi in density functional theory, Phys. Rev. B 18 (1978), pp. 7165–7168.
  • M. Galván, A. Vela, and J.L. Gázquez, Chemical reactivity in spin-polarized density functional theory, J. Phys. Chem. 92 (1988), pp. 6470–6474.
  • A. Lembarki, F. Rogemond, and H. Chermette, Gradient-corrected exchange potential with the correct asymptotic behavior and the corresponding exchange-energy functional obtained from the virial theorem, Phys. Rev. A 52 (1995), pp. 3704–3710.
  • J. Garza, J.A. Nichols, and D.A. Dixon, The Hartree product and the description of local and global quantities in atomic systems: A study within Kohn–Sham theory, J. Chem. Phys. 112 (2000), pp. 1150–1157.
  • J. Garza, J.A. Nichols, and D.A. Dixon, The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules, J. Chem. Phys. 112 (2000), pp. 7880–7890.
  • R. Baer and D. Neuhauser, Density functional theory with correct long-range asymptotic behavior, Phys. Rev. Lett. 94 (2005), p. 043002.
  • W. Cencek and K. Szalewicz, On asymptotic behavior of density functional theory, J. Chem. Phys. 139 (2013), p. 024104.
  • J. Carmona-Espíndola, J.L. Gázquez, A. Vela, and S.B. Trickey, Generalized gradient approximation exchange energy functional with correct asymptotic behavior of the corresponding potential, J. Chem. Phys. 142 (2015), p. 054105.
  • S. Kummel and L. Kronik, Orbital-dependent density functionals: Theory and applications, Rev. Mod. Phys. 80 (2008), pp. 3–60.
  • J. Garza, R. Vargas, J.A. Nichols, and D.A. Dixon, Orbital energy analysis with respect to LDA and self-interaction corrected exchange-only potentials, J. Chem. Phys. 114 (2001), pp. 639–651.
  • R. Vargas, A. Cedillo, J. Garza, and M. Galván, Reactivity criteria in spin-polarized density functional theory, in Reviews of Modern Quantum Chemistry, Vol. II, K.D. Sen, ed., World Scientific Publishing Co., Singapore, 2002, pp. 936–965.
  • A. Michels, J.D. Boer, and A. Bijl, Remarks concerning molecural interaction and their influence on the polarisability, Physica 4 (1937), pp. 981–994.
  • J. Garza, R. Vargas, and A. Vela, Numerical self-consistent-field method to solve the Kohn–Sham equations in confined many-electron atoms, Phys. Rev. E 58 (1998), pp. 3949–3954.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), pp. 3098–3100.
  • C.T. Lee, W.T. Yang, and R.G. Parr, Development of the Colle–Salvetti correlation-energy into a functional of the electron density, Phys. Rev. B 37 (1988), pp. 785–789.
  • J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981), pp. 5048–5079.
  • J.B. Krieger, Y. Li, and G.J. Iafrate, Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory, Phys. Rev. A 46 (1992), pp. 5453–5458.
  • J.B. Krieger, L. Yananad, and G.J. Iafrate, Construction and application of an accurate local spin-polarized Kohn–Sham potential with integer discontinuity: Exchange-only theory, Phys. Rev. A 45 (1992), pp. 101–126.
  • Y. Li, J.B. Krieger, and G.J. Iafrate, Self-consistent calculations of atomic properties using self-interaction-free exchange-only Kohn–Sham potentials, Phys. Rev. A 47 (1993), pp. 165–181.
  • J. Garza and J. Robles, Density-functional-theory softness kernel, Phys. Rev. A 47 (1993), pp. 2680–2685.
  • J. Garza, R. Vargas, A. Vela, and K.D. Sen, Shell structure in free and confined atoms using the density functional theory, J. Mol. Struct. (Theochem) 501 (2000), pp. 183–188.
  • J. Garza and R. Vargas, Density functional theory applied on confined many-electron atoms, in Electronic Structure of Quantum Confined Atoms and Molecules, K.D. Sen, ed., Springer, Cham, 2014, pp. 205–225.
  • J. Garza and R. Vargas, Comparative study between the Hartree–Fock and Kohn–Sham models for the lowest singlet and triplet states of the confined helium atom, Adv. Quantum Chem. 57 (2009), pp. 241–254.
  • T. Korzdorfer, On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors, J. Chem. Phys. 134 (2011), p. 094111.
  • J. Gorecki and W. Byers-Brown, Padded-box model for the effect of pressure on helium, J. Phys. B: At. Mol. Opt. Phys. 21 (1988), pp. 403–410.
  • J.L. Marin and S.A. Cruz, Enclosed quantum systems: use of the direct variational method, J. Phys. B: At. Mol. Opt. Phys. 24 (1991), pp. 2899–2907.
  • T. Sako, S. Yamamoto, and G.H.F. Diercksen, Confined quantum systems: dipole transition moment of two- and three-electron quantum dots, and of helium and lithium atoms in a harmonic oscillator potential, J. Phys. B: At. Mol. Opt. Phys. 37 (2004), pp. 1673–1688.
  • Y. Yakar, B. Cakir, and A. Ozmen, Electronic structure of two-electron quantum dot with parabolic potential, Philos. Mag. 95 (2015), pp. 311–325.
  • M. Rodriguez-Bautista, C. Díaz-García, A.M. Navarrete-López, R. Vargas, and J. Garza, Roothaan’s approach to solve the Hartree–Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior, J. Chem. Phys. 143 (2015), p. 034103.
  • M.A. Martínez-Sánchez, M. Rodriguez-Bautista, R. Vargas, and J. Garza, Solution of the Kohn–Sham equations for many-electron atoms confined by penetrable walls, Theor. Chem. Acc. 135 (2016), p. 207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.