229
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A new quaternary semiconductor compound (Ba2Sb4GeS10): Ab initio study

, &
Pages 549-560 | Received 13 Apr 2016, Accepted 05 Dec 2016, Published online: 22 Dec 2016

References

  • L. Geng, Ba2Sb4GeS10, Acta Crystallogr Sect E: Struct Rep Online 69 (2013), p. i24.10.1107/S1600536813007988
  • L. Geng, W.-D. Cheng, H. Zhang, C.-S. Lin, W.-L. Zhang, Y.-Y. Li, and Z.-Z. He, Syntheses, crystal and electronic structures, and characterizations of quaternary antiferromagnetic sulfides: Ba2MFeS5 (M = Sb, Bi), Inorg. Chem. 50 (2011), pp. 2378–2384.10.1021/ic102597y
  • A.H. Reshak, I.V. Kityk, O.V. Parasyuk, A.O. Fedorchuk, Z.A. Alahmed, N. AlZayed, H. Kamarudin, and S. Auluck, X-ray photoelectron spectrum, X-ray diffraction data, and electronic structure of chalcogenide quaternary sulfide Ag2In2GeS6: Experiment and theory, J. Mater. Sci. 48 (2013), pp. 1342–1350.10.1007/s10853-012-6879-z
  • S.-P. Guo, H.-Y. Zeng, X.-M. Jiang, and G.-C. Guo, Crystal structure and magnetic property of a quaternary sulfide, Al0.36Sm3Ge0.98S7, Chin. J. Struct. Chem. 28 (2009), pp. 1448–1452.
  • V. Pamukchieva, A. Szekeres, K. Todorova, E. Svab, and M. Fabian, Compositional dependence of the optical properties of new quaternary chalcogenide glasses of Ge-Sb-(S, Te) system, Opt. Mater. 32 (2009), pp. 45–48.10.1016/j.optmat.2009.06.003
  • V. Pamukchieva, A. Szekeres, K. Todorova, M. Fabian, E. Svab, Zs. Revay, and L. Szentmiklosi, Evaluation of basic physical parameters of quaternary Ge-Sb-(S, Te) chalcogenide glasses, J. Non-Cryst. Solids 355 (2009), pp. 2485–2490.10.1016/j.jnoncrysol.2009.08.028
  • X. Lin, Y. Guo, and N. Ye, BaGa2GeX6 (X=S, Se): New mid-IR nonlinear optical crystals with large band gaps, J. Solid State Chem. 195 (2012), pp. 172–177.10.1016/j.jssc.2012.01.043
  • J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, Growth and characterization of BaGa4Se7 crystal, J. Cryst. Growth 346 (2012), pp. 1–4.10.1016/j.jcrysgro.2012.02.035
  • W. Yin, K. Feng, R. He, D. Mei, Z. Lin, J. Yao, and Y. Wu, BaGa2MQ6 (M = Si, Ge; Q = S, Se): A new series of promising IR nonlinear optical materials, Dalton Trans. 41 (2012), pp. 5653–5661.10.1039/c2dt12493a
  • L. Kang, D.M. Ramo, Z. Lin, P.D. Bristowe, J. Qin, and C. Chen, First principles selection and design of mid-IR nonlinear optical halide crystals, J. Mater. Chem. 1 (2013), pp. 7363–7370.10.1039/c3tc31283f
  • J. Wang, K. Lee, and K. Kovnir, Synthesis, crystal, and electronic structure of Ba3Sb2Q7 (Q = S, Se), Z. Anorg. Allg. Chem. 641 (2015), pp. 1087–1092.10.1002/zaac.v641.6
  • H.-J. Zhao and P.-F. Liu, Synthesis, crystal and electronic structure, and optical property of the pentanary chalcohalide Ba3KSb4S9Cl, J. Solid State Chem. 232 (2015), pp. 37–41.10.1016/j.jssc.2015.08.047
  • M.-Y. Pan, S.-Q. Xia, X.-C. Liu, and X.-T. Tao, Ba3GeS5 and Ba3InS4Cl: Interesting size effects originated from the tetrahedral anions, J. Solid State Chem. 219 (2014), pp. 74–79.10.1016/j.jssc.2014.07.009
  • J. Wang, K. Lee, and K. Kovnir, Synthesis, crystal structure, and thermoelectric properties of two new barium antimony selenides: Ba2Sb2Se5 and Ba6Sb7Se16.11, J. Mater. Chem. C 3 (2015), pp. 9811–9818.
  • M. Ohta, D.Y. Chung, M. Kunii, and M.G. Kanatzidis, Low lattice thermal conductivity in Pb5Bi6Se14, Pb3Bi2S6, and PbBi2S4: Promising thermoelectric materials in the cannizzarite, lillianite, and galenobismuthite homologous series, J. Mater. Chem. A 2 (2014), pp. 20048–20058.10.1039/C4TA05135A
  • C.C. Huang, K. Knight, and D.W. Hewak, Antimony germanium sulphide amorphous thin films fabricated by chemical vapour deposition, Opt. Mater. 29 (2007), pp. 1344–1347.10.1016/j.optmat.2006.06.017
  • M.-C. Chen, L.-M. Wu, H. Lin, L.-J. Zhou, and L. Chen, Disconnection enhances the second harmonic generation response: Synthesis and characterization of Ba23Ga8Sb2S38, J. Am. Chem. Soc. 134 (2012), pp. 6058–6060.10.1021/ja300249n
  • J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, BaGa4Se7: A new congruent-melting IR nonlinear optical material, Inorg. Chem. 49 (2010), pp. 9212–9216.10.1021/ic1006742
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), p. 558–561.10.1103/PhysRevB.47.558
  • G. Kresse and J. Furthmüller, Efficiency of ab initio total energy calculation for metals and semiconductors using plane wave basis set, Comput. Mater. Sci. 6 (1996), pp. 15–50.10.1016/0927-0256(96)00008-0
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), p. 1758–1775.10.1103/PhysRevB.59.1758
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169–11186.10.1103/PhysRevB.54.11169
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), p. 17953–17979.10.1103/PhysRevB.50.17953
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865–3868.10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), p. 5188–5192.10.1103/PhysRevB.13.5188
  • Y.L. Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B 65 (2002), p. 104104.10.1103/PhysRevB.65.104104
  • N. Miao, B. Sa, J. Zhou, and Z. Sun, Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials, Comput. Mater. Sci. 50 (2011), p. 1559–1566.10.1016/j.commatsci.2010.12.015
  • D.H. Chung and W.R. Buessem, Anisotropy in single crystal Refractory Compound Vol. 2, F.W. Vahldiek and S.A. Mersol, eds., Plenum, New York, NY, 1968, p. 217.
  • A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125 (2006), p. 224106.10.1063/1.2404663
  • S. Baroni, S. de Gironcoli, A.D. Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001), p. 515–562.10.1103/RevModPhys.73.515
  • A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78 (2008), p. 134106.10.1103/PhysRevB.78.134106
  • N. Korozlu, K. Colakoglu, E. Deligoz, and Y.O. Ciftci, The structural, electronic and optical properties of CdxZn1–x Se ternary alloys, Opt. Commun. 284 (2011), pp. 1863–1867.10.1016/j.optcom.2010.11.032
  • M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B 73 (2006), p. 045112.10.1103/PhysRevB.73.045112
  • H. Shi, N. Zarifi, W.L. Yim, and J.S. Tse, Electron band structure of the high pressure cubic phase of AlH3, J. Phys. Conf. Ser. 377 (2012), p. 012093.
  • J.A. Kurzman, M.-S. Miao, and R. Seshadri, Hybrid functional electronic structure of PbPdO2, a small-gap semiconductor, J. Phys.: Condens. Matter 23 (2011), p. 465501.
  • Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007), p. 054115.
  • E. Deligoz, H.B. Ozisik, K. Colakoglu, and Y.O. Ciftci, First principles prediction of structural stability, elastic, lattice dynamical and thermal properties of osmium carbides, Mater. Sci. Technol. 30 (2014), pp. 842–849.10.1179/1743284713Y.0000000420
  • S. Li, X. Ju, and C. Wan, Theoretical studies of elastic properties of orthorhombic LiBH4, Comput. Mater. Sci. 81 (2014), pp. 378–385.10.1016/j.commatsci.2013.08.044
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952), p. 349–385.10.1088/0370-1298/65/5/307
  • D. Chattaraj, C. Majumder, and S. Dash, Structural, electronic, elastic and thermodynamic properties of Zr2Fe and Zr2FeH5: A comprehensive study using first principles approach, J. Alloys Compd. 615 (2014), pp. 234–242.10.1016/j.jallcom.2014.06.126
  • I.R. Shein and A.L. Ivanovskii, Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations, J. Phys.: Condens. Matter 20 (2008), p. 415218.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), p. 823–843.10.1080/14786440808520496
  • D. Suetin, I. Shein, and A. Ivanovskii, Structural, elastic, electronic and magnetic properties of perovskite-like Co3WC, Rh3WC and Ir3WC from first principles calculations, Solid State Sci. 12 (2010), pp. 814–817.10.1016/j.solidstatesciences.2010.02.013
  • H. Dong, C. Chen, S. Wang, W. Duan, and J. Li, Elastic properties of tetragonal BiFeO3 from first-principles calculations, Appl. Phys. Lett. 102 (2013), p. 182905.10.1063/1.4804641
  • V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Status Solidi (RRL) - Rapid Res. Lett. 1 (2007), pp. 89–91.
  • H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Comput. Mater. Sci. 44 (2008), p. 774–778.10.1016/j.commatsci.2008.05.026
  • H. Han, Density-functional theory study of the effect of pressure on the elastic properties of CaB6, Chin. Phys. B 22 (2013), p. 077101.10.1088/1674-1056/22/7/077101
  • X.-Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011), pp. 1275–1281.10.1016/j.intermet.2011.03.026
  • P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), p. 4891.10.1063/1.368733
  • K. Biswas and C.W. Myles, Electronic and vibrational properties of framework-substituted type-II silicon clathrates, Phys. Rev. B 75 (2007), p. 245205.10.1103/PhysRevB.75.245205
  • H. Peng, C.L. Wang, J.C. Li, R.Z. Zhang, H.C. Wang, Y. Sun, and M. Sheng, Electronic and lattice vibrational properties of BaSi2 from density functional theory calculations, J. Electron. Mater. 40 (2011), pp. 620–623.10.1007/s11664-010-1483-y
  • E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, Bilbao crystallographic server: Useful databases and tools for phase-transition studies, Phase Transitions 76 (2003), pp. 155–170.10.1080/0141159031000076110
  • J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln=La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure, Acta Mater. 60 (2012), pp. 3380–3392.10.1016/j.actamat.2012.03.004
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003), p. 383–417.10.1146/annurev.matsci.33.011403.113718
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992), p. 6131–6140.10.1103/PhysRevB.46.6131
  • B. Huang, Y.-H. Duan, Y. Sun, M.-J. Peng, and S. Chen, Electronic structures, mechanical and thermodynamic properties of cubic alkaline-earth hexaborides from first principles calculations, J. Alloys Compd. 635 (2015), p. 213–224.10.1016/j.jallcom.2015.02.128
  • X. Zhang and W. Jiang, First-principles investigations on vibrational, thermodynamic, mechanical properties and thermal conductivity of L12 Al3X (X = Sc, Er, Tm, Yb) intermetallics, Phys. Scr. 90 (2015), p. 065701.10.1088/0031-8949/90/6/065701
  • C.-X. Li, Y.-H. Duan, and W.-C. Hu, Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X (X = F, Cl or Br), J. Alloys Compd. 619 (2015), pp. 66–77.10.1016/j.jallcom.2014.09.022
  • E. Deligoz, U.F. Ozyar, and H.B. Ozisik, Theoretical investigations on vibrational properties and thermal conductivities of ternary antimonides TiXSb, ZrXSb and HfXSb (X= Si, Ge), Philos. Mag. 96 (2016), pp. 1712–1723.10.1080/14786435.2016.1177226
  • H. Koc, A. Yildirim, E. Tetik, and E. Deligoz, Ab initio calculation of the structural, elastic, electronic, and linear optical properties of ZrPtSi and TiPtSi ternary compounds, Comput. Mater. Sci. 62 (2012), pp. 235–242.10.1016/j.commatsci.2012.05.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.