1,285
Views
36
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The austenite microstructure evolution in a duplex stainless steel subjected to hot deformation

, , &
Pages 1209-1237 | Received 04 Nov 2016, Accepted 06 Feb 2017, Published online: 22 Feb 2017

References

  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science, New York, 2004.
  • T. Sakai and J.J. Jonas, Dynamic recrystallization: Mechanical and microstructural considerations, Acta Metallurgica 32 (1984), pp. 189–209.10.1016/0001-6160(84)90049-X
  • H.J. McQueen, Development of dynamic recrystallization theory, Mater. Sci. Eng. A 387–389 (2004), pp. 203–208.10.1016/j.msea.2004.01.064
  • E. Brünger, X. Wang, and G. Gottstein, Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H, Scr. Mater. 38 (1998), pp. 1843–1849.10.1016/S1359-6462(98)00124-9
  • H. Beladi, P. Cizek, and P.D. Hodgson, Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: Microstructure and texture evolution, Metall. Mater. Trans. A 40 (2009), pp. 1175–1189.10.1007/s11661-009-9799-z
  • H. Beladi, P. Cizek, and P.D. Hodgson, On the characteristics of substructure development through dynamic recrystallization, Acta Mater. 58 (2010), pp. 3531–3541.10.1016/j.actamat.2010.02.026
  • H. Beladi, P. Cizek, and P.D. Hodgson, Texture and substructure characteristics of dynamic recrystallization in a Ni-30%Fe austenitic model alloy, Scr. Mater. 61 (2009), pp. 528–531.10.1016/j.scriptamat.2009.05.013
  • H. Beladi, P. Cizek, and P.D. Hodgson, The mechanism of metadynamic softening in austenite after complete dynamic recrystallization, Scr. Mater. 62 (2010), pp. 191–194.10.1016/j.scriptamat.2009.10.022
  • A. Iza-Mendia, A. Piñol-Juez, J.J. Urcola, and I. Gutiérrez, Microstructural and mechanical behaviour of a duplex stainless steel under hot working conditions, Metall. Mater. Trans. A 29 (1998), pp. 2975–2986.10.1007/s11661-998-0205-z
  • A. Piñol-Juez, A. Iza-Mendia, and I. Gutiérrez, δ/γ interface boundary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel, Metall. Mater. Trans. A 31 (2000), pp. 1671–1677.10.1007/s11661-000-0177-0
  • L. Duprez, B.C. De Cooman, and N. Akdut, Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation, Metall. Mater. Trans. A 33 (2002), pp. 1931–1938.10.1007/s11661-002-0026-4
  • C. Pinna, J.H. Beynon, C.M. Sellars, and M. Bornert, Experimental investigation and micromechanical modeling of the hot deformation of duplex stainless steels, Proceedings of the International Conference on Mathematical Modelling in Metal Processing and Manufacturing-COM, Ottawa, 2000.
  • L.E. Hernandez-Castillo, J.H. Beynon, C. Pinna, and S. Van Der Zwaag, Micro-scale strain distribution in hot-worked duplex stainless steel, Steel Res. Int. 76 (2005), pp. 137–141.10.1002/srin.2005.76.issue-2-3
  • G. Martin, Hot workability of duplex stainless steels, PhD thesis, University of Grenoble, 2011.
  • G. Martin, S.K. Yerra, Y. Bréchet, M. Véron, J.D. Mithieux, B. Chéhab, L. Delannay, and T. Pardoen, A macro-and micromechanics investigation of hot cracking in duplex steels, Acta Mater. 60 (2012), pp. 4646–4660.10.1016/j.actamat.2012.03.040
  • G. Martin, D. Caldemaison, M. Bornert, C. Pinna, Y. Bréchet, M. Véron, J.D. Mithieux, and T. Pardoen, Characterization of the high temperature strain partitioning in duplex steels, Exp. Mech. 53 (2013), pp. 205–215.10.1007/s11340-012-9628-y
  • P. Cizek, The microstructure evolution and softening processes during high temperature deformation of a 21Cr–10Ni–3Mo duplex stainless steel, Acta Mater. 106 (2016), pp. 129–143.10.1016/j.actamat.2016.01.012
  • A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Microstructural evolution during hot deformation of duplex stainless steel, Mater. Sci. Technol. 23 (2007), pp. 1478–1484.10.1179/174328407X239019
  • P. Cizek, Characteristics of shear bands formed in an austenitic stainless steel during hot deformation, Mater. Sci. Eng. A 324 (2002), pp. 214–218.10.1016/S0921-5093(01)01314-4
  • P. Cizek, F. Bai, W.M. Rainforth, and J.H. Beynon, Fine structure of shear bands formed during hot deformation of two austenitic steels, Mater. Trans. JIM 45 (2004), pp. 1–8.
  • P. Cizek, F. Bai, E.J. Palmiere, and W.M. Rainforth, EBSD study of the orientation dependence of substructure characteristics in a model Fe-30wt% Ni alloy subjected to hot deformation, J. Microsc. 217 (2005), pp. 138–151.10.1111/jmi.2005.217.issue-2
  • A.S. Taylor, P. Cizek, and P.D. Hodgson, Orientation dependence of the substructure characteristics in a Ni–30Fe austenitic model alloy deformed in hot plane strain compression, Acta Mater. 60 (2012), pp. 1548–1569.10.1016/j.actamat.2011.11.048
  • D. Poddar, P. Cizek, H. Beladi, and P.D. Hodgson, The evolution of microbands and their interaction with NbC precipitates during hot deformation of a Fe–30Ni–Nb model austenitic steel, Acta Mater. 99 (2015), pp. 347–362.10.1016/j.actamat.2015.08.003
  • D. Poddar, P. Cizek, H. Beladi, and P.D. Hodgson, Orientation dependence of the deformation microstructure in a Fe–30Ni–Nb model austenitic steel subjected to hot uniaxial compression, Metall. Mater. Trans. A 46 (2015), pp. 5933–5951.10.1007/s11661-015-3182-z
  • D. Poddar, P. Cizek, H. Beladi, and P.D. Hodgson, Microstructure characteristics of the 〈1 1 1〉 oriented grains in a Fe–30Ni–Nb model austenitic steel deformed in hot uniaxial compression, Mater. Charact. 118 (2016), pp. 382–396.10.1016/j.matchar.2016.06.015
  • Q. Liu, D. Juul Jensen , and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Mater. 46 (1998), pp. 5819–5838.
  • P.J. Hurley and F.J. Humphreys, The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy, Acta Mater. 51 (2003), pp. 1087–1102.10.1016/S1359-6454(02)00513-X
  • X. Huang and G. Winther, Dislocation structures. Part I. Grain orientation dependence, Philos. Mag. 87 (2007), pp. 5189–5214.10.1080/14786430701652851
  • F.J. Humphreys and P.S. Bate, The microstructures of polycrystalline Al–0.1 Mg after hot plane strain compression, Acta Mater. 55 (2007), pp. 5630–5645.10.1016/j.actamat.2007.06.032
  • A. Albou, J.H. Driver, and C. Maurice, Microband evolution during large plastic strains of stable {1 1 0}〈1 1 2〉 Al and Al–Mn crystals, Acta Mater. 58 (2010), pp. 3022–3034.10.1016/j.actamat.2010.01.034
  • G.M. Le, A. Godfrey, C.S. Hong, X. Huang, and G. Winther, Orientation dependence of the deformation microstructure in compressed aluminium, Scr. Mater. 66 (2012), pp. 359–362.10.1016/j.scriptamat.2011.11.034
  • Q.Z. Chen, A.H.W. Ngan, and B.J. Duggan, Microstructure evolution in an interstitial-free steel during cold rolling at low strain levels, Proc. R. Soc. London A 459 (2003), pp. 1661–1685.10.1098/rspa.2002.1051
  • Q.Z. Chen and B.J. Duggan, On cells and microbands formed in an interstitial-free steel during cold rolling at low to medium reductions, Metall. Mater. Trans. A 35 (2004), pp. 3423–3430.10.1007/s11661-004-0178-5
  • B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Overview no. 96 - evolution of f.c.c. deformation structures in polyslip, Acta Metall. Mater. 40 (1992), pp. 205–219.10.1016/0956-7151(92)90296-Q
  • I. Gutierrez-Urrutia and D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel, Acta Mater. 60 (2012), pp. 5791–5802.10.1016/j.actamat.2012.07.018
  • I. Gutierrez-Urrutia and D. Raabe, Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel, Scr. Mater. 69 (2013), pp. 53–56.10.1016/j.scriptamat.2013.03.010
  • F.J. Humphreys and P.S. Bate, Measuring the alignment of low-angle boundaries formed during deformation, Acta Mater. 54 (2006), pp. 817–829.10.1016/j.actamat.2005.10.012
  • N. Hansen, New discoveries in deformed metals, Metall. Mater. Trans. A 32 (2001), pp. 2917–2935.10.1007/s11661-001-0167-x
  • G. Winther, Slip patterns and preferred dislocation boundary planes, Acta Mater. 51 (2003), pp. 417–429.10.1016/S1359-6454(02)00423-8
  • G. Winther, X. Huang, A. Godfrey, and N. Hansen, Critical comparison of dislocation boundary alignment studied by TEM and EBSD: Technical issues and theoretical consequences, Acta Mater. 52 (2004), pp. 4437–4446.10.1016/j.actamat.2004.05.050
  • G. Winther and X. Huang, Dislocation structures. Part II. Slip system dependence, Philos. Mag 87 (2007), pp. 5215–5235.10.1080/14786430701591505
  • N. Haghdadi, P. Cizek, H. Beladi, and P.D. Hodgson, A novel high-strain-rate ferrite dynamic softening mechanism facilitated by the interphase in the austenite/ferrite microstructure, Acta Mater. 126 (2017), pp. 44–57.10.1016/j.actamat.2016.12.045
  • R.N. Gunn, Duplex stainless steels: Properties and applications, Woodhead Publishing, Cambridge, 1997.10.1533/9781845698775
  • F.J. Humphreys, P.S. Bate, and P.J. Hurley, Orientation averaging of electron backscattered diffraction data, J. Microsc. 201 (2001), pp. 50–58.10.1046/j.1365-2818.2001.00777.x
  • P. Heilmann, W.A.T. Clark, and D.A. Rigney, Computerized method to determine crystal orientations from Kikuchi patterns, Ultramicroscopy 9 (1982), pp. 365–371.10.1016/0304-3991(82)90097-3
  • O. Engler and V. Randle, Introduction to texture analysis – Macrotexture, microtexture and orientation mapping, 2nd ed., CRC Press, New York, 2010.
  • C. Cayron, Quantification of multiple twinning in face centred cubic materials, Acta Mater. 59 (2011), pp. 252–262.10.1016/j.actamat.2010.09.029
  • I.L. Dillamore, P.L. Morris, C.J.E. Smith, and W.B. Hutchinson, Transition bands and recrystallization in metals. Proc. R. Soc. London A 329 (1972), pp. 405–420.10.1098/rspa.1972.0120
  • C.S. Lee and B.J. Duggan, Deformation banding and copper-type rolling textures, Acta Metall. Mater. 9 (1993), pp. 2691–2699.10.1016/0956-7151(93)90138-I
  • D. Raabe, Z. Zhao, S.-J. Park, and F. Roters, Theory of orientation gradients in plastically strained crystals, Acta Mater. 50 (2002), pp. 421–440.10.1016/S1359-6454(01)00323-8
  • C. Hong, X. Huang, and G. Winther, Dislocation content of geometrically necessary boundaries aligned with slip planes in rolled aluminium, Philos. Mag. 93 (2013), pp. 3118–3141.10.1080/14786435.2013.805270
  • M.Z. Quadir, N. Mateescu, L. Bassman, W. Xu, and M. Ferry, Three-dimensional morphology of microbands in a cold-rolled steel, Scr. Mater. 57 (2007), pp. 977–980.10.1016/j.scriptamat.2007.08.012
  • N. Afrin, M.Z. Quadir, L. Bassman, J.H. Driver, A. Albou, and M. Ferry, The three-dimensional nature of microbands in a channel die compressed Goss-oriented Ni single crystal, Scr. Mater. 64 (2011), pp. 221–224.10.1016/j.scriptamat.2010.10.020
  • N. Afrin, M.Z. Quadir, W. Xu, and M. Ferry, Spatial orientations and structural irregularities associated with the formation of microbands in a cold deformed Goss oriented Ni single crystal, Acta Mater. 60 (2012), pp. 6288–6300.10.1016/j.actamat.2012.08.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.