213
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Atomistic investigation of homogeneous nucleation in undercooled liquid

, , , , &
Pages 2255-2267 | Received 07 Sep 2016, Accepted 07 May 2017, Published online: 16 May 2017

References

  • K. Kelton and A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology Vol. 15, Elsevier, Amsterdam, 2010.
  • J. Schmelzer, G. Röpke, and V.B. Priezzhev, Nucleation Theory and Applications, Wiley Online Library, Weinheim, 2005.10.1002/3527604790
  • C. Guo, J. Wang, J. Li, Z. Wang, and S. Tang, Kinetic pathways and mechanisms of two-step nucleation in crystallization, J. Phys. Chem. Lett. 7 (2016), pp. 5008–5014.10.1021/acs.jpclett.6b02276
  • Y. Peng, F. Wang, Z. Wang, A.M. Alsayed, Z. Zhang, A.G. Yodh, and Y. Han, Two-step nucleation mechanism in solid–solid phase transitions, Nat. Mater. 14 (2015), p. 101.
  • G.I. Tóth, T. Pusztai, G. Tegze, G. Tóth, and L. Gránásy, Amorphous nucleation precursor in highly nonequilibrium fluids, Phys. Rev. Lett. 107 (2011), p. 175702.10.1103/PhysRevLett.107.175702
  • P. Tan, N. Xu, and L. Xu, Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization, Nat. Phys. 10 (2014), p. 73.
  • T.H. Zhang and X.Y. Liu, How does a transient amorphous precursor template crystallization, J. Amer. Chem. Soc. 129 (2007), pp. 13520–13526.10.1021/ja073598k
  • W. Ostwald, Studies on formation and transformation of solid materials, Z. Phys. Chem 22 (1897), pp. 289–330.
  • L. Nurminen, A. Kuronen, and K. Kaski, Kinetic Monte Carlo simulation of nucleation on patterned substrates, Phys. Rev. B 63 (2000), p. 035407.10.1103/PhysRevB.63.035407
  • Y. Shibuta, S. Sakane, T. Takaki, and M. Ohno, Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature, Acta Mater. 105 (2016), pp. 328–337.10.1016/j.actamat.2015.12.033
  • K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, Phase-field crystal modeling and classical density functional theory of freezing, Phys. Rev. B 75 (2007), p. 064107.10.1103/PhysRevB.75.064107
  • R. Backofen and A. Voigt, A phase-field-crystal approach to critical nuclei, J. Phys.: Condens. Matter 22 (2010), p. 364104.
  • M. Greenwood, J. Rottler, and N. Provatas, Phase-field-crystal methodology for modeling of structural transformations, Phys. Rev. E 83 (2011), p. 031601.10.1103/PhysRevE.83.031601
  • C. Guo, J. Wang, Z. Wang, J. Li, Y. Guo, and Y. Huang, Interfacial free energy adjustable phase field crystal model for homogeneous nucleation, Soft Matter 12 (2016), pp. 4666–4673.10.1039/C6SM00774K
  • C. Guo, J. Wang, Z. Wang, J. Li, Y. Guo, and S. Tang, Modified phase-field-crystal model for solid-liquid phase transitions, Phys. Rev. E 92 (2015), p. 013309.10.1103/PhysRevE.92.013309
  • Y. Guo, J. Wang, Z. Wang, S. Tang, and Y. Zhou, Phase field crystal modeling of grain rotation with small initial misorientations in nanocrystalline materials, Comput. Mater. Sci. 88 (2014), pp. 163–169.10.1016/j.commatsci.2014.03.012
  • S. Tang, Y.-M. Yu, J. Wang, J. Li, Z. Wang, Y. Guo, and Y. Zhou, Phase-field-crystal simulation of nonequilibrium crystal growth, Phys. Rev. E 89 (2014), p. 012405.10.1103/PhysRevE.89.012405
  • G. Tegze, L. Gránásy, G.I. Tóth, F. Podmaniczky, A. Jaatinen, T. Ala-Nissila, and T. Pusztai, Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase-field crystal model, Phys. Rev. Lett. 103 (2009), p. 035702.10.1103/PhysRevLett.103.035702
  • C. Guo, J. Wang, J. Li, Z. Wang, S. Tang, and Y. Huang, Uncoupling growth mechanisms of binary eutectics during rapid solidification, J. Phys. Chem. C 121 (2017), pp. 8204–8210.10.1021/acs.jpcc.7b01311
  • L. Granasy and G.I. Toth, Crystallization: Colloidal suspense, Nat. Phys. 10 (2014), p. 12–13.
  • M. Greenwood, N. Provatas, and J. Rottler, Free energy functionals for efficient phase field crystal modeling of structural phase transformations, Phys. Rev. Lett. 105 (2010), p. 045702.10.1103/PhysRevLett.105.045702
  • N. Provatas and K. Elder, Phase-field Methods in Materials Science and Engineering, Wiley, Hoboken, 2011.
  • Y. Waseda, The Structure of Non-crystalline Materials: Liquids and Amorphous Solids, McGraw-Hill New York, NY, 1980
  • J.R. Savage and A.D. Dinsmore, Experimental evidence for two-step nucleation in colloidal crystallization, Phys. Rev. Lett. 102 (2009), p. 198302.10.1103/PhysRevLett.102.198302
  • W. Lechner, C. Dellago, and P.G. Bolhuis, Role of the prestructured surface cloud in crystal nucleation, Phys. Rev. Lett. 106 (2011), p. 085701.10.1103/PhysRevLett.106.085701
  • S. Tang, R. Backofen, J. Wang, Y. Zhou, A. Voigt, and Y.-M. Yu, Three-dimensional phase-field crystal modeling of fcc and bcc dendritic crystal growth, J. Crystal Growth 334 (2011), pp. 146–152.10.1016/j.jcrysgro.2011.08.027
  • P.G. Vekilov, The two-step mechanism of nucleation of crystals in solution, Nanoscale 2 (2010), pp. 2346–2357.10.1039/c0nr00628a
  • Y. Huang, J. Wang, Z. Wang, J. Li, C. Guo, Y. Guo, and Y. Yang, Existence and forming mechanism of metastable phase in crystallization, Comput. Mater. Sci. 122 (2016), pp. 167–176.10.1016/j.commatsci.2016.05.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.